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Abstract

Image matting requires high-quality pixel-level human
annotations to support the training of a deep model in re-
cent literature. Whereas such annotation is costly and hard
to scale, significantly holding back the development of the
research. In this work, we make the first attempt towards ad-
dressing this problem, by proposing a self-supervised pre-
training approach that can leverage infinite numbers of data
to boost the matting performance. The pre-training task is
designed in a similar manner as image matting, where ran-
dom trimap and alpha matte are generated to achieve an
image disentanglement objective. The pre-trained model
is then used as an initialisation of the downstream mat-
ting task for fine-tuning. Extensive experimental evalua-
tions show that the proposed approach outperforms both the
state-of-the-art matting methods and other alternative self-
supervised initialisation approaches by a large margin. We
also show the robustness of the proposed approach over dif-
ferent backbone architectures. Our project page is available
at https://crystraldo.github.io/dpt_mat/.

1. Introduction
Image matting has played a predominant role in daily

applications in the past few years, e.g. online meetings and
smartphone applications, referring to extracting the fore-
ground from natural images by predicting an alpha matte.
A natural image I can be represented as a linear fusion of
foreground F and background B with a weighting parame-
ter α as defined below:

I = αF + (1− α)B. (1)

Matting, as a low-level computer vision problem, has
been studied for decades in the literature and remains a chal-
lenging problem. With the availability of computational re-
sources and network capacity, most existing work addresses
this problem based on deep neural networks. Among these
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Figure 1. An overview of the proposed DPT. During pre-
processing, a trimap is generated by assigning regions of fore-
ground (white blocks), background (black blocks) and unknown
(the rest grey ones). Based on that, a random alpha matte α is gen-
erated. The foreground and background images are composited
with the α according to Eq. 1. Together with the trimap as input,
the network is trained to estimate an alpha matte. The aforemen-
tioned generated α is used as a pseudo label to train the model.

methods, the contributions mainly lie on adjusting the ob-
jective function [12,17,27], network structure [29,30,37,43]
or the data input to the network [1, 33, 35]. Due to the data-
driven nature of deep learning, the quality of data and its
annotation is the key to the model performance, apart from
the computational resources, and is becoming the bottle-
neck. However, due to the nature of the image matting task
and its high-precision requirement for the pixel-level anno-
tation of the alpha matte, data labelling is incredibly costly
and hard to scale, restricting the development of the field
significantly. Composition-1k [43] and Distinct-646 [30],
the most commonly used matting datasets, only contain
hundreds of foreground images with corresponding anno-
tations, and serve as the main benchmarks for the whole
community. To address this vital and timely challenge, in-
stead of seeking more labour to annotate more data, we step
back and are more interested in the question: is that possible
to leverage the freely available huge amounts of unlabelled
natural images to boost the performance of image matting?

https://crystraldo.github.io/dpt_mat/


To this end, in this work we make the first attempt towards
self-supervised pre-training for image matting.

Recently, self-supervised learning (SSL) has made
prominent progress in deep learning, which benefits from
the rapid update of hardware. In natural language pro-
cessing, self-supervised learning was first proposed to cater
for the growth of millions of data. Large-scale language
modelling without human-annotated labels has obtained
brilliant success by autoregressive language modeling [31]
and masked language modeling [10]. The idea of self-
supervised learning has also greatly benefited computer vi-
sion. Lots of methods [14, 15, 41] are built to enhance the
representation learning of models and achieve superior re-
sults in downstream tasks. SimCLR [6] and MoCo [15]
made the breakthrough in self-supervised learning on high-
level image classification representation. Several following-
up works [4, 41] enhanced the ability of representation
learning by improving the contrastive loss. Although vi-
sual self-supervised representation learning has proved its
effectiveness in several high-level tasks, low-level tasks
have barely been touched and a suitable self-supervised pre-
training approach for image matting is under-explored. To
bridge the gap, two challenges need to be addressed:

i) Auxiliary input is required for the matting task, i.e.
trimap. According to Eq. 1, there are 3 unknown param-
eters. To estimate α given only I is a massively ill-posed
problem, hence additional guidance is required. Existing
SSL methods either learn by predicting the missing parts
or constructing positive-negative pairs for contrastive learn-
ing, without considering additional guidance during the pre-
training, making it infeasible to directly apply off-the-shelf
SSL methods for the matting task.

ii) Image matting, by definition, is a pixel-level dis-
entanglement problem. It not only requires foreground-
background segmentation, but also needs to estimate the
transparency of the fused regions near boundaries. In addi-
tion, it is a class-agnostic task, different from existing SSL
methods focusing on semantic instance discrimination.

To address the above challenges, in this paper, we
present a new disentangled self-supervised pre-training ap-
proach tailored for image matting, termed DPT. DPT is de-
signed to be a pretext task similar to the matting task, en-
abling large-scale pre-training for matting-aware represen-
tation learning. In our DPT, we simulate the matting pro-
cess including input guidance and supervision information
on synthetic datasets which is similar to matting datasets.
With the proposed DPT pre-training, the learned representa-
tion is forced to be with the potential ability of image disen-
tanglement. Such representations are leveraged to boost the
performance of image matting in the following fine-tuning
stage. An illustration of the proposed DPT is shown in Fig-
ure 1. First, trimap T is generated by randomly cropping
patches and splitting these patches into three categories of

background, foreground and unknown. According to the
pre-defined region information, alpha matte α is randomly
generated as the pseudo label. A randomly chosen fore-
ground image F , and background B are fused according
to α. The fused image is then fed into the network to-
gether with the trimap T to predict the aforementioned al-
pha matte. Some qualitative examples of the proposed pre-
training task are shown in Figure 2.

With the proposed DPT pre-training, we show the po-
tential of leveraging large-scale (infinite) unlabeled data for
image matting with demonstrated clear improvement over
the state-of-the-art. The main contributions of this work are
summarised as below:

• We propose, to our knowledge, the first self-supervised
large-scale pretraining approach for image matting.
The pretext task is designed and tailored for the mat-
ting task and shown to be effective in learning disen-
tanglement representations.

• The proposed DPT pre-training approach is shown to
be effective across different network backbones, with
consistent performance improvement.

• Extensive experimental analysis on several public
datasets shows the effectiveness of the proposed
method, outperforming existing image matting ap-
proaches by a large margin.

2. Related works
Natural image matting Traditional natural image mat-
ting can be summarized into two categories, sampling-
based and propagation-based. Sampling-based methods [7,
13, 34] collected foreground and background colour sam-
ples to generate alpha of unknown region. Propagation-
based methods [5, 18, 19] used neighbouring pixels and es-
timated the alpha matte of the unknown region by propagat-
ing the alpha from the foreground and background regions.

Until recently, common matting approaches are divided
into two parts: trimap-based and trimap-free. Most meth-
ods [17, 26, 43] took trimap as input to provide regional in-
formation. DIM [43] introduced the most popular matting
dataset Composition-1k and a two-stage encoder-decoder
network with trimap as an additional input. Alphagan [27]
presented a generative adversarial network for matting to
predict alpha. SampleNet [37] applied sampling methods
to the matting task. A novel end-to-end natural image mat-
ting method GCA [21] was proposed with a guided contex-
tual attention module. External semantic information was
incorporated into the model in SIM [36] to obtain a better
alpha matte. As the first transformer-based matting model,
Matteformer [29] introduced a prior token that participates
in the self-attention mechanism. TransMatting [3] modelled
transparent objects with a big receptive field.



Figure 2. Example results on ImageNet-1k. For each set of images, we show the merged image (left), defined trimap (second), labelled
foreground image (third) and generated foreground image (right). The size of patches in trimap is 7× 7 and the unknown region occupies
75% of the patches, 12.5% for foreground and 12.5% for background. According to Eq. 1, we combine the merged image according to
the labelled alpha matte and pseudo label, respectively, to generate labelled foreground and generated foreground. *Following generic
trimap-based methods, the model only predicts the unknown region, and both the foreground region and background region are copied
directly from the foreground image.

For trimap-free methods [20,33], HAttMatting [30] pro-
posed Distinctions-646 dataset and designed a hierarchical
attention structure. Liu et al. [23] employed coarse anno-
tated data coupled with fine annotated data for semantic hu-
man matting without trimaps as an extra input. Background
Matting [22, 33] replaced trimap with an additional back-
ground image without the object. MG Matting [45] took
coarse mask as its guidance. To control the matting with
natural language description, RIM [20] proposed a new task
named referring image matting to extract object alpha that
matched the given language description. While there have
been some outstanding trimap-free methods, however, there
is a certain gap between trimap-free methods and trimap-
based ones in performance. Considering trimap is widely
used for image matting, we adopt trimap as the auxiliary
input of the disentangled pre-training task.

Self-supervised learning Self-supervised learning ap-
proaches have been significantly used in deep learning.
In natural language processing, self-supervised learning
is mainly achieved by auto-regressive language model-
ing [31, 32] and masked language modeling [10]. These
methods filled the masked portion of the input sequence by
predicting the missing part for pre-training. In this way,
the pre-trained model could fit hundreds of millions of data
generalize well and achieve better performance when fine-
tuning downstream tasks.

Motivated by the success of unsupervised learning in
NLP, some self-supervised learning methods [2, 6, 14, 15,
28, 38, 40, 41] are introduced for vision tasks. MoCo [15]

presented an unsupervised pre-training and transferred it to
various downstream tasks by fine-tuning. MoBY [41] trans-
ferred adaption to detection and segmentation with the Swin
transformer network. Masked autoencoder (MAE) [14] ran-
domly masked patches and reconstructed the missing re-
gion. A similar idea was also verified in SimMIM [42],
where the input image was masked with moderately large
patch size and gained a better representation. To better
adapt for dense prediction task, [28, 39] migrated contrast
loss from image-level to pixel-level. CP2 [38] facilitated
both image-level and pixel-level representation through a
simple copy-paste operation. There are many excellent SSL
methods, whereas self-supervised learning designed for im-
age disentanglement is under-explored.

3. Method

Our DPT is a simple self-supervised pre-training ap-
proach for image matting task. The architecture of our
model is an encoder-decoder framework. We pre-trained
our model on the ImageNet-1k (IN1K) training set. Unlike
the previous SSL methods, we additionally input the guid-
ance to provide the region information required for image
matting. Referring to most of the previous matting works,
we decided to take widely adopted trimap as the guidance,
which delineates the background, foreground, and unknown
region.

In the pre-training process, the trimap and the corre-
sponding alpha matte are randomly generated first, mean-
while, the two natural images are randomly selected as
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Figure 3. The generation of trimap and pseudo label. θ percent of
patches in trimap as unknown region, β percent for background γ
percent for foreground, where θ+β+γ = 1 . Then a random alpha
matte α is generated as a pseudo label according to the trimap.

background and foreground, respectively. Then the fused
image is composited with the alpha matte, background im-
age, and foreground image via Eq.1. At last, the fused im-
age and the one-hot trimap are concatenated as the input of
the network to predict alpha matte. The randomly gener-
ated alpha matte will be used to supervise the predicted al-
pha matte. After self-supervised pre-training, we fine-tune
on downstream matting dataset using the trained model pa-
rameters as initialization.

Next, we will introduce the details of generating the
trimap, the corresponding alpha matte, and the objective
function.

Trimap generation Trimap, as the crucial guidance for
matting, is defined in advance. In this paper, we adopt
a very simple but effective method to generate trimap. A
blank trimap T ∈ RH×W is created first, where H and W
are the height and width, respectively. The trimap is with
the same resolution as the input image. Then T will be di-
vided into grids of the same size, such as 7 × 7 pixels. We
randomly select θ percent of grids as the unknown region,
β percent of grids as the foreground region, and γ percent
of grids as the background region, θ + β + γ = 1. The
background is assigned 0, the foreground is assigned 2, and
the unknown region is assigned 1. In the training step, the
T is converted into a one-hot embedding as the input guid-
ance of the model. The trimap generation is random and is
not independent of the content of the input image. Here, we
randomly select based on grids rather than pixels to keep
the structure of foreground and background.

Alpha matte generation After obtaining trimap, we con-
tinue to generate the corresponding alpha matte α. Alpha
matte is a matrix that has the same size as the trimap. Each
value αi of the alpha matte is in the range of 0 to 1 and will
be used to fuse the foreground image and the background
image. According to Eq. 1, α = 0 means the fused image is

equal to the background image, α = 1 means the fused im-
age is equal to the foreground image. For each position i in
the alpha matte, we set αi = 1 if the given trimap Ti = 2,
and αi = 0 if the given trimap Ti = 0. For the position
in which Ti = 1, we randomly assign a number between 0
and 1 for each pixel. It should be emphasized that, in or-
der to be closer to the annotation of the matting dataset, we
randomly select an integer value between 0 to 255 for each
pixel in the unknown region, then divide by 255 as the final
value. The flow chart is shown in Figure 3. In the experi-
ment section, we discuss different ways to generate trimap
and Alpha matte.

Loss function We adopt three kinds of generic loss func-
tions: L1 regression loss, Composition loss [43] and Lapla-
cian loss [17] for both pre-training and fine-tuning stage.
The final loss is the sum of the above three losses.

Lfinal = Ll1 + Lcomp + Llap, (2)

where Ll1 is the absolute difference between the predicted
alpha matte and ground truth. The Lcomp is the absolute dif-
ference between the original image and fused image, where
the fused image is generated with the original foreground,
original background and predicted alpha matte according
to Eq. 1. The Llap calculates differences of two Lapla-
cian pyramid representations between ground truth and pre-
dicted alpha matte. All the above losses are calculated only
in the unknown region.

Discussion Our DPT is similar to natural image matting.
We both use additional guidance as an external input to ex-
tract the foreground from the fused image. However, there
are still some differences. The normal image matting task
has a small number of annotations and increases the amount
of training data with synthetic images. The trimap is pro-
duced from the ground truth alpha matte by binarizing the
foreground objects with a threshold with random dilation.
In this case, the unknown region is around the boundaries
of the foreground object, which also makes it easier for the
model to converge. The training of DPT is based on large-
scale unlabeled data. Trimap and alpha matte are randomly
generated, which increases the difficulty of training. How-
ever, the huge amount of unlabeled data makes up for this
shortcoming and greatly improves the final performance.

4. Experiments
In this section, we report the detailed setting of our ex-

periments and conduct our experimental evaluations on im-
age matting datasets. In the following, we first compare
our method with other state-of-the-art matting methods on
Composition-1k [43] and Distinct-646 [30] datasets. Then
we compare different alternative pre-training methods with
the proposed DPT. We also apply our DPT pre-training on



different backbones to validate its robustness. Extensive ab-
lation studies are conducted to validate the contributions of
each technical detail.

4.1. Experimental setting

Data augmentation We do self-supervised pre-training
on the ImageNet-1k (IN1K) training set [9]. Following pre-
vious pre-training approaches [14, 25], we use the default
image input size of 224×224. For each foreground image,
we randomly select an image as the background. The trimap
and pseudo label are kept the same size as the image. The
patch size within the trimap is set as 7×7. The ratios of
an unknown region, foreground, and background are set to
75%, 12.5% and 12.5%, respectively. We first perform an
affine transformation with a random degree, scale, shear,
and flip. After that, we randomly change the Hue values of
the image. Finally, we composite the foreground and back-
ground images with pseudo alpha matte.

In the fine-tuning stage, we perform our experiments on
image matting datasets. The data augmentation is set fol-
lowing MG Matting [45]. Two foreground images are ran-
domly fused with alpha matte, followed by random affine
transformations and colour jitterings. Patches with size
512× 512 are cropped around the unknown area in the cen-
tral area of the foreground image. The augmented fore-
ground and background are then fused according to the
ground truth alpha matte.

Pre-training We employ the AdamW optimizer with
β1=0.9 and β2=0.95 for our objective functions. The learn-
ing rate adopts a cosine annealing strategy with the base
learning rate of 3 × 10−4 and a weight decay of 0.05. By
default, we perform self-supervised pre-training with batch
size 512 on a single machine equipped with eight NVIDIA
V100 GPUs. The model is trained for 100 epochs with a
10-epoch linear warm-up stage.

Fine-tuning In the fine-tuning stage, we follow the same
setting as in MatteFormer [29]. We initialize the network
with the Tiny model of Swin Transformer [25] pretrained on
IN1K. The input size of the network is 512× 512, batch size
of 40 for four V100 GPUs on one machine. We initialize the
base learning rate with 10−3. Adam optimizer is adopted
with β1=0.5 and β2=0.999 for training 200k iterations. In
the first 5k iterations, we warm up the learning rate by linear
increasing to help the model convergence.

Evaluation metrics Following the common practice in
previous matting methods [29, 30, 45], we adopt the sum
of absolute differences (SAD), mean squared error (MSE),
gradient (Grad), and connectivity errors (Conn) as our eval-
uation metrics. The fused image and 3-channel trimap are
concatenated in the channel dimension as inputs for the net-
works. The input image is padded to a size of multiple of

Table 1. Quantitative fine-tuning results on Composition-1K. * in-
dicates additional semantic information as input.

Method SAD↓ MSE (10−3)↓ Grad↓ Conn↓
KNN-Matting [5] 175.4 103.0 124.1 176.4
DIM [43] 50.4 14.0 31.0 50.8
AlphaGAN [27] 52.4 30.0 38.0 -
IndexNet [26] 45.8 13.0 25.9 43.7
SampleNet [37] 40.4 9.9 - -
Context-Aware [17] 35.8 8.2 17.3 33.2
GCA [30] 35.3 9.1 16.9 32.5
HDMatt [44] 33.5 7.3 14.5 29.9
TIMI-Net [24] 29.1 6.0 11.5 25.4
MG Matting [45] 32.1 7.0 14.0 27.9
SIM* [36] 28.0 5.8 10.8 24.8
RMat [8] 25.0 - 9.0 -
MatteFormer [29] 23.8 4.0 8.7 18.9
TransMatting [3] 26.8 5.2 10.6 22.1
DPT (Ours) 21.0 3.1 7.0 15.9

32 to facilitate the downsampling of the model and after-
wards restored to its original size for evaluation. Note that
lower values of the four evaluation metrics indicate higher
performance (i.e. more accurate alpha matte estimation).

4.2. Quantitative comparison to state-of-the-arts

Composition-1k Here we test our DPT on Composition-
1k [43] test set and compare it with state-of-the-art ap-
proaches. Composition-1k is a synthetic matting dataset
that contains 431 foreground objects and corresponding la-
belled alpha matte for training. The test set contains 50
foreground objects that are composited with 20 background
images chosen from Pascal-VOC [11], a total of 1,000 sam-
ples. The proposed DPT surpasses previous methods with
a large margin as shown in Table 1. Surprisingly, our
DPT outperforms MatteFormer by a large margin, by sim-
ply replacing its pre-training weights from IN1K supervised
one to our proposed self-supervised one, suggesting the ef-
fectiveness of the proposed approach.

Distinct-646 Distinct-646 [30] is a matting benchmark
dataset containing 59.6k training images and 1k test im-
ages, in total 646 distinct foreground alpha mattes. Unlike
the previous matting dataset, it does not provide trimap an-
notations or other guidance, hence it is difficult to make a
fair comparison with other methods. Therefore, we generate
trimap by randomly dilating alpha mattes from the ground
truth alpha matte as done in MG Matting [45].

After obtaining the trimap guidance, we compare with
the state-of-the-art methods and report the performance in
Table 2, in which the methods marked with ∗ are trained on
Composition-1k, while others are trained on Distinct-646.
For a fair comparison, here we compare with MG Matting
and MatteFormer by using the exact same testing setting
and test on the Distinct-646 test set. It can be seen from the
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Figure 4. The qualitative results of ours and other state-of-the-art methods on Composition-1k test set.

Table 2. Quantitative results on Distinct-646. Results with ∗ are
only trained on Composition-1k, others are trained on Distinct-646
as reported in HAtt Matting [30].

.
Method SAD↓ MSE (10−3)↓ Grad↓ Conn↓
Closed-Form [19] 105.7 23.0 91.8 114.6
Learning Based [46] 105.0 21.0 94.2 110.4
KNN Matting [5] 116.7 25.0 103.2 121.5
DIM [43] 47.6 9.0 43.3 55.9
HAttMatting [30] 49.0 9.0 41.6 50.0

DIM∗ [43] 48.7 11.2 42.6 50.0
Index∗ [26] 47.0 9.4 40.6 46.8
Context-Aware∗ [17] 36.3 7.1 29.5 35.4
GCA∗ [30] 39.6 8.2 32.2 38.8
MG Matting∗ [45] 36.9 6.3 35.0 22.3
MatteFormer∗ [29] 31.0 4.9 22.6 19.6

DPT(Ours) ∗ 28.5 3.8 18.0 19.0

results that the proposed DPT outperforms other methods
with a clear margin across all four evaluation metrics.

4.3. Qualitative performance

The qualitative results of ours and other state-of-the-art
methods on the Composition-1k test set are shown in Fig-
ure 4, in which we compare with GCA [30], MG Mat-
ting [45] and MatteFormer [29]. In most samples, various
methods can achieve good results, but in some challenging
cases (e.g. cobweb, light bulb), our method performs much
better, especially in detailed regions.

4.4. Analysis on alternative pre-training methods

To validate the effectiveness of the proposed pre-training
approach, we consider several representative existing pre-
trained models developed for Swin Transformer (Tiny
model). The classification supervised pre-training and
Transformer-SSL are pre-trained for 300 epochs, SimMIM
and DPT are trained for 100 epochs. All the methods are
pre-trained on IN1K [9] only, and the pre-trained models
are used as initialisation of MatteFormer for fine-tuning on
Composition-1k. The results are shown in Table 3:

• Random: without any pre-trained weights for initial-
isation, we randomly initialize the model parameters,
and directly train from scratch.

• Supervised: the network initializes with the most
commonly used IN1K [9] fully-supervised pre-trained
model.

• SimMIM [42]: a simple framework for SSL by masked
image modeling.

• MoBY [41]: an SSL method combined with contrastive
loss, serving as a representative contrastive learning-
based work.

It can be seen from the experimental results that the per-
formance of the model without the pre-trained weight is
much worse than those with the pre-trained weight, sug-
gesting that due to the limited number of labelled matting
images, prior knowledge needs to be obtained and is in-
deed helpful. By using pre-trained weights (second row) it



Table 3. With different pre-training methods, quantitative results
after fine-tuning on Composition-1k test set.

Pre-train Method SAD↓ MSE (10−3)↓
Random 49.2 14.7
Supervised [9] 23.8 4.0
SimMIM [42] 24.6 4.2
Transformer-SSL (MoBY) [41] 24.0 3.9
DPT (Ours) 21.0 3.1

Table 4. With different backbone pre-training, fine-tuning quanti-
tative results on Composition-1k test set.

Method Backbone Init. SAD↓ MSE (10−3)↓
GCA [30] Resnet-34 Supervised 35.3 9.1
GCA [30] Resnet-34 DPT 33.0 8.3

MG Matting [45] Resnet-34 Supervised 29.3 6.3
MG Matting [45] Resnet-34 DPT 27.1 5.5

MatteFormer [29] Swin-T Supervised 23.8 4.0
MatteFormer [29] Swin-T DPT 21.0 3.1

achieves a positive performance gain on the matting task.
The remaining two self-supervised methods can achieve
comparable performance with fully supervised classifica-
tion. Surprisingly, our proposed DPT achieves much bet-
ter performance, even outperforming the supervised coun-
terpart. This verifies that the proposed DPT learns better
representations for the matting task.

4.5. Analysis on different backbones

Preceding deep learning-based matting approaches can
be roughly divided into two categories in terms of backbone
architecture: CNN-based and Transformer-based. Most
of the matting works use CNN-based backbones, mainly
based on the ResNet [16] architecture. With the rise of
Swin Transformer [25], there are also some works based
on Transformers. To analyze the scalability of DPT, we
conduct experiments by pre-training on both backbones and
fine-tuning on the same matting dataset.

For CNN-based approaches, we choose GCA [30] and
MG Matting [45]. The backbone used by GCA and MG
Matting is ResNet-34 [16]. However, the input guidance
of MG Matting is a 1-channel mask, different from trimap-
based methods. To better compare with it, we replace its in-
put mask with a 3-channel trimap and retrain the model for
testing. The corresponding network layer is also modified
accordingly. We use the IN1K classification supervised pre-
trained model as the baseline. And compare it with GCA
and MG Matting by re-training it using our DPT.

On the other hand, we select a state-of-the-art
Transformer-based approach, MatteFormer [29]. As above,
we also use the weights of classification supervision as the
baseline, and re-train MatteFormer with our DPT. We load

Pixel-level sampling Block-level sampling

Unknown region
Background region

Foreground region

Trimap Alpha matte Alpha matteTrimap

Figure 5. Pseudo alpha matte generation strategy.

Table 5. Results of different pseudo alpha matte strategies.

Strategy SAD↓ MSE (10−3)↓
Pixel-level sampling 21.0 3.1
Block-level sampling 21.0 3.2

Table 6. With different stages of loading DPTpre-trained weights,
fine-tuning quantitative results on Composition-1k test set.

Method Stage Init. SAD↓ MSE (10−3)↓
MatteFormer Encoder Supervised 23.8 4.0
MatteFormer Encoder DPT 22.1 3.4
MatteFormer Encoder+Decoder DPT 21.0 3.1

the two types of pre-training parameters separately and per-
form fine-tuning on the MatteFormer. The performance
comparison is shown in Table 4.

Note that in the fine-tuning stage, only the pre-trained
weights have been changed, but we can see a substantial
improvement has been achieved on both backbones when
using our DPT. This validates the robustness and transfer-
ability of the proposed method.

4.6. Ablation study

Pseudo alpha matte generation strategy We compare
two pseudo alpha matte generation strategies, as illustrated
in Figure 5. 1) Pixel-level sampling strategy. We first di-
vide a 224×224 image into 7×7 patches. For each patch,
it is randomly assigned as either foreground, background or
unknown regions, and the trimap is generated consequently.
Then pseudo alpha matte is randomly generated in each
pixel according to the pre-defined trimap.

The results of the two strategies are shown in Table 5.
After experiments, both strategies can achieve new state-of-
the-art results. We finally chose the pixel-level sampling
strategy with slightly higher performance.

Stages of loading pre-trained weights In order to ver-
ify the impact of loading pre-trained weights onto differ-
ent stages on performance, we conduct experiments based
on MatteFormer [29]. We compare the supervised method
which only loads the pre-trained weights in the encoder,
with DPT loading the pre-trained weights in either the en-
coder or the whole model. As shown in Table 6, our DPT
outperforms the baseline by a large margin, which can be
further improved when including the pre-trained decoder.



Table 7. The fine-tuning quantitative results on Composition-1k
test set, when with and without trimap during pre-training.

Method Trimap SAD↓ MSE (10−3)↓
MatteFormer Without 23.4 3.7
MatteFormer With 21.0 3.1

Image Predicted alpha GT Alpha matteTrimap

Figure 6. Qualitative performance of directly predicting alpha
matte using our pre-trained model with an All-unknown trimap.

Impact of trimap for pre-training Meanwhile, we per-
form an ablation study to validate the impact of trimap for
the pre-training stage. Unlike DPT, the input only contains
synthetic images with three channels while the data pro-
cessing and subsequent fine-tuning stage remain in the same
setting. The result is shown as Table 7. Although descent
results can be achieved without trimap, adding trimap as an
additional input further improves performance significantly.

Contour information validation for pre-training In or-
der to validate the effectiveness of our pre-training approach
on learning contour information, we directly applied the
pre-trained model on the comp-1k test set, without fine-
tuning. We set all input trimaps as unknown, i.e. without
any form of guidance. Then we fed the merged image along
with such All-unknown trimap into the pre-trained model to
predict the alpha. As shown in Figure 6, although without
any guidance and fine-tuning, our pre-trained model is able
to extract object contour information (even hair and fur),
suggesting its capacity to learn and understand high-level
object information. This study further validates the effec-
tiveness of our approach for the matting tasks.

The ratio of the unknown region in trimap The un-
known region is necessary for the loss computation. As the
size of the unknown region changes, the final results also
change. The foreground and background regions also pro-
vide information for the network. Thus a suitable ratio of
the unknown region will affect the final performance. Here
we analyze different ratios of this unknown region and re-
port the results in Figure 7. It can be seen that when we
choose a lower ratio such as 25% or 50%, the results will
be slightly worse. If we choose a higher threshold, such
as 75% or higher, then the final performance will become
stable and get better results. As a result, in this paper, we
choose the ratio of 75%.
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Figure 7. SAD for different ratios of the unknown region in pre-
defined trimap.

Figure 8. Qualitative results of different unknown ratios of trimap.
Top to bottom: unknown region accounts for 25%, 50% and 75%,
respectively. For each image group, from left to right: the merged
image, trimap, and the foreground image generated by Eq. 1.

Visualization of different ratios of the unknown regions
in trimap is shown in Figure 8. As the unknown area in-
creases, the model is supposed to predict more pixels, and
the noise points on the prediction result will also increase,
which is revealed in the result.

5. Conclusion

In this work, we looked into the fundamental problem
of image matting (i.e. data) and proposed a disentangled
self-supervised pre-training method named DPT. It is de-
signed for the image matting task to enable the utilization
of large-scale unlabeled data. More specifically, we gen-
erated trimap as an auxiliary input and pseudo alpha matte
for supervision, then trained the model towards disentangle-
ment of the fused image. After this pre-training, the derived
model was used for the initialization of the downstream im-
age matting task, to boost its performance. Extensive exper-
imental analysis showed the effectiveness and robustness of
our DPT. We hope this work could attract attention from
the community to think about the data leverage side for the
matting task and potentially inspire follow-up research.
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