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Abstract—Weakly supervised semantic segmentation is receiving great attention due to its low human annotation cost. In this paper,
we aim to tackle bounding box supervised semantic segmentation, i.e., training accurate semantic segmentation models using
bounding box annotations as supervision. To this end, we propose Affinity Attention Graph Neural Network (A2GNN). Following
previous practices, we first generate pseudo semantic-aware seeds, which are then formed into semantic graphs based on our newly
proposed affinity Convolutional Neural Network (CNN). Then the built graphs are input to our A2GNN, in which an affinity attention
layer is designed to acquire the short- and long- distance information from soft graph edges to accurately propagate semantic labels
from the confident seeds to the unlabeled pixels. However, to guarantee the precision of the seeds, we only adopt a limited number of
confident pixel seed labels for A2GNN, which may lead to insufficient supervision for training. To alleviate this issue, we further
introduce a new loss function and a consistency-checking mechanism to leverage the bounding box constraint, so that more reliable
guidance can be included for the model optimization. Experiments show that our approach achieves new state-of-the-art performances
on Pascal VOC 2012 datasets (val : 76.5%, test : 75.2%). More importantly, our approach can be readily applied to bounding box
supervised instance segmentation task or other weakly supervised semantic segmentation tasks, with state-of-the-art or comparable
performance among almot all weakly supervised tasks on PASCAL VOC or COCO dataset. Our source code will be available at
https://github.com/zbf1991/A2GNN.

Index Terms—Weakly supervised, semantic segmentation, graph neural network.
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1 INTRODUCTION

W EAKLY supervised semantic segmentation aims to
make a pixel-level semantic prediction using weak

annotations as supervision. According to the level of pro-
vided annotations, the weak supervision can be divided
into scribble level [1], [2], [3], bounding box level [4], [5],
[6], [7], point level [8] and image level [9], [10], [11], [12].
In this paper, we mainly focus on bounding box supervised
semantic segmentation (BSSS). The key challenge of BSSS
lies in how to accurately estimate the pseudo object mask
within the given bounding box so that reliable segmenta-
tion networks can be learned with the generated pseudo
masks using current popular fully convolutional networks
(FCN) [13], [14], [15], [16].

Most previous practices [4], [5], [6], [17] for the BSSS task
use object proposals [18], [19] to provide some seed labels
as supervision. These methods follow a common pipeline
of employing object proposals [18], [19] and CRF [20] to
produce pseudo masks, which are then adopted as ground-
truth to train the segmentation network. However, such a
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pipeline often fails to generate accurate pseudo labels due
to the gap between segmentation masks and object propos-
als. To overcome this limitation, graph-based learning was
subsequently proposed to use the confident but a limited
number of pixels mined from proposals as supervision.
Compared to previous approaches, graph-based learning
especially Graph Neural Network (GNN) can directly build
long-distance edges between different nodes and aggregate
information from multiple connected nodes, enabling to
suppress the negative impact of the label noise. Besides,
GNN performs well in semi-supervised tasks even with
limited labels.

Recently, GraphNet [21] attempts to use Graph Convolu-
tional Network (GCN) [22] for the BSSS task. They convert
images to unweighted graphs by grouping pixels in a super-
pixel to a graph node [23]. Then the graph is input to a stan-
dard GCN with cross entropy loss to generate pseudo labels.
However, there are two main drawbacks which limit its
performance: (1) GraphNet [21] builds an unweighted graph
as input, however, such a graph cannot accurately provide
sufficient information since it treats all edges equally, with
the edge weight being either 0 or 1, though in practice not all
connected nodes expect the same affinity. (2) Using Graph-
Net [21] will lead to incorrect feature aggregation as input
nodes and edges are not 100% accurate. For example, for
an image that contains both dogs and cats, the initial node
feature of dog fur and cat fur might be highly similar, which
will produce some connected edges between them as edges
are built based on feature similarity. Such edges will lead
to a false positive case since GraphNet [21] only considers
the initial edges for feature propagation. Thus, if the strong

https://github.com/zbf1991/A2GNN
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Fig. 1. The difference between our built graph and that of previous
approach [21]. (a) Superpixel based approach [21]. (b) Our approach.
The numbers along the edges indicate the edge values, soft edge allows
any edge weights between 0 and 1.

correlations among pixels from different semantics can be
effectively alleviated, a better propagation model can be
acquired to generate more accurate pseudo object masks.

To this end, we design an Affinity Attention Graph
Neural Network (A2GNN) to address the above mentioned
issues. Specifically, instead of using traditional method to
build a unweighted graph, we propose a new affinity Con-
volutional Neural Network (CNN) to convert an image to
a weighted graph. We consider that a weighted graph is
more suitable than an unweighted one as it can provide
different affinities for different node pairs. Fig. 1 shows the
difference between our built graph and that of the previous
approach [21]. It can be seen that the previous approach
only considers locally connected nodes, and they build
an unweighted graph based on superpixel [23], while we
consider both local and long distance edges, and the built
weighted graph views one pixel as one node.

Second, in order to produce accurate pseudo labels, we
design a new GNN layer, in which both the attention mech-
anism and the edge weights are applied in order to ensure
accurate propagation. So feature aggregation between pair-
wise nodes with weak/no edge connection or low attention
can be significantly declined, and thus eliminating incorrect
propagation accordingly. The node attention dynamically
changes as training goes on.

However, to guarantee the accuracy of supervision, we
only choose a limited number of confident seed labels as
supervision, which is insufficient for the network optimiza-
tion. For example, only around 40% foreground pixels are
labeled in one image and none of them is 100% reliable.
To further tackle this issue, we introduce a multi-point
(MP) loss to augment the training of A2GNN. Our MP

loss adopts an online update mechanism to provide extra
supervision from bounding box information. Moreover, in
order to strengthen feature propagation of our A2GNN,
MP loss attempts to close up the feature distance of the
same semantic objects, making the pixels of the same object
distinguishable from others. Finally, considering that the
selected seed labels may not perfectly reliable, we introduce
a consistency-checking mechanism to remove those noisy
labels from the selected seed labels, by comparing them with
the labels used in the MP loss.

To validate the effectiveness of our A2GNN, we perform
extensive experiments on PASCAL VOC. In particular, we
achieve a new mIoU score of 76.5% on the validation set. In
addition, our A2GNN can be further smoothly transferred
to conduct the bounding box supervised instance segmen-
tation (BSIS) task or other weakly supervised semantic seg-
mentation tasks. According to our experiments, we achieve
new state-of-the-art or comparable performances among all
these tasks.

Our main contributions are summarized as:

• We propose a new framework that effectively com-
bines the advantage of CNN and GNN for weakly
supervised semantic segmentation. To the best of
our knowledge, this is the first framework that can
be readily applied to all existing weakly supervised
semantic segmentation settings and the bounding
box supervised instance segmentation setting.

• We design a new affinity CNN network to convert a
given image to an irregular graph, where the graph
node features and the node edges are generated si-
multaneously. Compared to existing approaches, the
graphs built from our method are more accurate for
various weakly supervised semantic segmentation
settings.

• We propose a new GNN, A2GNN, where we de-
sign a new GNN layer that can effectively mitigate
inaccurate feature propagation through information
aggregation based on edge weights and node atten-
tion. We further propose a new loss function (MP
loss) to mine extra reliable labels using the bounding
box constraint and remove existing label noise by
consistency-checking.

• Our approach achieves state-of-the-art performance
for BSSS on PASCAL VOC 2012 (val: 76.5%, test:
75.2%) as well as BSIS on PASCAL VOC 2012
(mAPr0.5: 59.1%, mAPr0.7: 35.5%, mAPr0.75: 27.4%) and
COCO (mAPr0.5: 43.9%). Meanwhile, when applying
the proposed approach to other weakly supervised
semantic segmentation settings, new state-of-the-art
or comparable performances are achieved as well.

2 RELATED WORK

2.1 Weakly Supervised Semantic Segmentation

According to the definition of supervision signals, weakly
supervised semantic segmentation can be generally divided
into the following categories: based on scribble label [1], [2],
[3], bounding box label [4], [5], [6], point label [8] and image-
level class label [9], [10], [11]. Scribble, bounding box and
point labels are stronger supervision signals compared to
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the image-level class label since both class and localization
information are provided. Whereas image-level labels only
provide image class tags with the lowest annotation cost.

Different supervisions are processed with different meth-
ods to generate pseudo labels. For the scribble supervision,
Lin et al. [2] used superpixel based approach (e.g., SLIC
[23]) to expand the initial scribbles, and then used an FCN
model [13] to get the final predictions. Tang et al. proposed
two regularized losses [1], [3] using the constraint energy
loss function to expand the scribble information. For the
point supervision, Bearman et al. [8] directly incorporated
a generic object prior in the loss function. For image-level
supervision, class activation map (CAM) [24] is usually
used as seeds to get pseudo labels. For example, Ahn and
Kwak designed an affinity net [9] to obtain the transi-
tion probability matrix, and used random walk [25] to get
pseudo labels. Huang et al. [26] proposed to use the seed
region growing algorithm [27] to get pseudo labels from
the initial confident class activation map. For the bounding
box supervision, SDI [5] used the segmentation proposal
by combining MCG [28] with GrabCut [29] to generate the
pseudo labels. Song et al. proposed a box-driven method [6],
using box-driven class-wise masking and filling rate guided
adaptive loss to generate pseudo labels. Box2Seg [30] at-
tempt to design a segmentation network which is suitable
to utilize the noisy labels as supervision.

Following the same definition, there are different level
sub-tasks for weakly supervised instance segmentation:
image-level [12] and bounding box level [5], [7]. For the
image-level task, Ahn et al. tried to generate the instance
pseudo label using an affinity network [12]. For the bound-
ing box task, SDI [5] produced pseudo labels using the
segmentation proposal by combining MCG [28] with Grab-
Cut [29] while Hsu et al. [7] tried to design a new loss
function which samples positive and negative pixels relying
on bounding box supervision.

2.2 Graph Neural Network

Generally, there are many different GNN [22], [31], [32],
[33] methods designed for semi-supervised task and they
have achieved satisfying performances. Recently, GNN has
been successfully used in various computer vision tasks
such as person search [34], image recognition [35], 3D pose
estimation [36] and video object segmentation [37], etc.

For weakly supervised semantic segmentation, GraphNet
[21] was proposed for bounding box task using GCN [22].
Specifically, based on the CAM technique [24], bounding
box supervision was converted to initial pixel-level super-
vision firstly. And then the superpixel method [23] was
applied to produce the graph nodes. They used a pre-
trained CNN model to obtain the node feature, which was
computed using average pooling for all its pixels. After that
an adjacency matrix was computed based on the L1 distance
between a node and its 8-neighbor nodes. Later, GCN was
used to propagate the initial pixel-level labels to integral
pseudo labels. Finally, all the pseudo labels were input into a
semantic segmentation model for training. GraphNet proved
that GNN was one possible solution for weakly supervised
semantic segmentation. However, this method has some
limitations. First of all, using superpixels as nodes introduce

incorrect node labels, and building an adjacency matrix
by a threshold loses some important detailed information.
Secondly, the performance of this method is limited by the
usage of GNN [22], which only considers the non-weight
adjacency matrix. Finally, only cross entropy loss is used for
GraphNet, which cannot mitigate the influence of incorrect
nodes, edges and labels.

In order to overcome the limitations of previous graph-
based learning approach, we design a new approach,
A2GNN, which takes a more accurate weighted graph as
input and aggregates feature by considering both attention
mechanism and edge weights. Meanwhile, we propose a
new loss function to provide extra supervision and impose
restrictions on the feature aggregation, thus our A2GNN can
generate high quality pseudo labels.

3 GENERATE PIXEL-LEVEL SEED LABEL

The common practice to initialize weakly supervised task
is to generate pixel-level seed labels from weak supervi-
sion [21], [38], [39]. For the BSSS task, both image-level
and bounding box-level labels are available. We use both
of them to generate the pixel-level seed labels since image-
level label can generate foreground seeds while bounding
box-level label can provide accurate background seeds. To
convert the image-level label to pixel-level labels, we use a
CAM-based method [9], [12], [24], [38]. To generate pixel-
level labels from bounding box supervision, Grab-cut [29] is
used to generate the initial labels, and the pixels which do
not belong to any box are regarded as background labels.
Finally, these two types of labels are fused together to
generate the pixel-level seed labels.

Specifically, we use SEAM [38], which is a self-
supervised classification network, to generate the pixel-
level seed labels from image-level supervision. Suppose a
dataset with category set C = [c0, c1, c2, ..., cN−1], in which
c0 is background with the rest representing foreground
categories. The pixel-level seed labels from image-level su-
pervision are:

MI = NetSEAM(I), (1)

where MI is the generated seed labels. NetSEAM(·) is the
classification CNN used in SEAM [38].

For the BSSS task, as it provides bounding box-level
label in addition to image-level label. We also generate
pixel labels from the bounding box label as it can provide
accurate background labels and object localization infor-
mation. Given an image, suppose the bounding box set
is B = {B1, ..., BM}. For a bounding box Bk with label
LBk

, its height and width are h and w, respectively. We
use Grab-cut [29] to generate the seed labels from bounding
box supervision, the seed labels for each bounding box are
defined as:

MBk
(i) =

{
Grab(i), if i ∈ Bk and Grab(i) 6= c0
255, else

, (2)

where Grab(·) is the Grab-cut operator and 255 means the
pixel label is unknown.
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Fig. 2. An example of generating pixel-level seed labels. Given an image
with its label, we firstly generate MI from image-level label using a
classification CNN and SEAM [38] method. Meanwhile, bounding box
label is transferred to pixel-level label MB using Grab-cut. Finally, MI

and MB are integrated together to get the pixel-level seed label MF .
Each color represents one class and “white” means the pixel label is
unknown.

Pixels not belonging to any bounding box are expressed
as background, and the final seed labels generated from
bounding box are:

MB(i) =

{
c0, if i /∈ B
MBk

(i), if i ∈ B
. (3)

For pixel i in the image, the final pixel-level seed label is
defined as :

MF (i) =


MB(i), if i /∈ B
MI(i), if i ∈ B and MB(i) =MI(i)

MBk
(i), if i ∈ Bk and LBk

/∈ S(MI-Bk
)

255, else

, (4)

where S(MI-Bk
) is the set of predicted categories in MI for

bounding box Bk. LBk
/∈ S(MI-Bk

) indicates that there is
no correct predicted label in MI for bounding box Bk and
we therefore use the prediction from MBk

as the final seed
labels.

In Fig. 2, an example is given to demonstrate the process
to convert bounding box supervision to pixel-level seed
labels. After combing MI and MB , we can get the pixel-
level seed label.

4 THE PROPOSED A2GNN
4.1 Overview

In order to utilize GNN to generate the accurate pixel-level
pseudo labels, there are three main problems: (1) How to
provide useful supervision information and reduce the label
noise as much as possible. (2) How to convert the image data
to accurate graph data. (3) How to generate accurate pseudo
labels based on the built graph and the supervision.

In this section, we will elaborate on the proposed
A2GNN to address the above mentioned three main prob-
lems. To generate an accurate graph, we propose a new
affinity CNN to convert an image to a graph. To provide
accurately labeled nodes for the graph, we select highly
confident pixel-level seed labels as node labels, and at
the same time, we introduce extra online updated labels
based on the bounding box supervision, meanwhile, the

pixel-level seed labels are further refined by consistency-
checking. To generate accurate pseudo labels, we design a
new GNN layer since the previous GNN, such as GCN [22]
or AGNN [32] is designed based on the assumption that
labels are 100% accurate, while in this case, there is no
foreground pixel label being 100% reliable.

In Fig. 3, we show the main process of our approach,
which can be divided into three steps:
(1) Generating confident seed labels. In this step, both

image-level labels and bounding box-level labels are
converted to initial pixel-level seed labels, as explained
in section 3. Then the pixel-level seed labels with high
confidence will be selected as confident seed labels
(section 4.2).

(2) Converting images to graphs. In this step, we propose
a new affinity CNN to generate the graph. Meanwhile,
the selected confident seed labels will be converted to
corresponding node labels.

(3) Generating final pixel-level pseudo labels. A2GNN is
trained using the converted graph as input, and it makes
the prediction for all nodes in the graph. After convert-
ing node pseudo labels to pixel labels, we generate the
final pixel-level pseudo labels.
After that, a FCN model such as Deeplab [14], [15] for

BSSS or MaskR-CNN [16] for BSIS is trained using above
pixel-level pseudo labels as supervision.

In the following section, we will first introduce how
to provide useful supervision, and then we will give an
explanation about how to build a graph from the image
(section 4.3). Finally, we will introduce A2GNN, including
its affinity attention layer (section 4.4) and its loss function
(section 4.5).

4.2 Confident Seed Label Selection
An intuitive solution is to use the pixel-level seed label
MF obtained from Eq. (4) as the seed labels. However,
MF is noisy and directly using it will be harmful to train
a CNN/GNN. As a result, in this paper, we only select
those highly confident pixel-level seed labels in MF as the
final seed labels. Specifically, we use a dynamic threshold to
select top 40% confident pixel labels M ′I following [40] from
the pixel label MI in Eq. (1). Then the selected seed labels
are defined as:

Mg(i) =

{
MF (i), if MF (i) =MB(i) or MF (i) =M ′I(i)

255, else
, (5)

where 255 means that the label is unknown. MB and MF

are obtained from Eq. (3) and Eq. (4), respectively. Fig. 3
(top-right) illustrates the confident label selection.

Although noisy labels can be removed considerably, the
confident label selection has two main limitations: 1) it also
removes some correct labels, making the rest labels scarce
and mainly focus on discriminative object parts (e.g., human
head) rather than uniformly distributed in the object; 2)
there still exist non-accurate labels.

To tackle the label scarcity problem in the BSSS task,
we propose to mine extra supervision information from the
available bounding box. Assuming all bounding boxes are
tight, for a random row or column pixels inside a bounding
box, there is at least one pixel belonging to the object.
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Fig. 3. The framework of our proposed A2GNN. Firstly, we generate pixel-level seed labels using the bounding box and the image-level label. Then
our affinity CNN is used to convert images to graphs. Meanwhile, we select confident labels from pixel-level seed labels as the node labels (The
node labels in the white region are unknown). Finally, A2GNN uses the graph data as input and the node labels as supervision to produce pseudo
labels.

Identifying these nodes can provide extra foreground labels.
And using the online updated labels, we introduce a new
consistency-checking mechanism to further remove some
noisy labels from Mg . We will describe the detailed process
in section 4.5 since they rely on the output of our A2GNN.

4.3 Graph Construction

4.3.1 Affinity CNN

We propose a new affinity CNN to produce an accurate
graph from an image using the available affinity labels as
supervision. This is because affinity CNN has the following
merits. First, instead of regrading one superpixel as a node,
it views a pixel as one node which introduces less noise.
Second, the affinity CNN uses node affinity labels as train-
ing supervision, which ensures to generate suitable node
features for this specific task, while previous GraphNet [21]
uses classification supervision for training. Third, compared
to the short distance unweighted graph (edges are only
represented as 0 and 1) built in GraphNet [21], an affinity
CNN can build a weighted graph with soft edges covering a
long distance, which gives more accurate node relationship.

Different from prior works [9], [12], [41], [42] that use
all noisy labels in Eq. (4) as supervision, our affinity CNN
only uses the confident seed labels as defined in Eq. (5) as
supervision to predict the relationship of different pixels.

In order to train our affinity CNN, we firstly generate
class-agnostic labels from the confident pixel-level seed
labels Mg from Eq. (5):

LA(i, j) =


1, (i, j) ∈ Rpair and M ′g(i) =M ′g(j)
0, (i, j) ∈ Rpair and M ′g(i) 6=M ′g(j)
255, else

, (6)

where both i and j are pixel indices and 255 means that this
pixel pair is not considered. M ′g is the down-sampled result
of Mg in order to keep the same height and width with the

feature map. Rpair is the pixel pair set to train the affinity
CNN, and it satisfies the following formula:

Rpair =
{
(i, j)|M ′g(i) 6= 255 and M ′g(j) 6= 255

and ||Pos(i)− Pos(j)||2 6 r} ,
(7)

where || · ||2 is an Euclidean distance operator, Pos(·) rep-
resents the coordinate of the pixel. r is the radius, which is
used to restrict the selection of a pixel pair.

Given an image I , suppose the feature map from the
affinity CNN is FA, following [9], L1 distance is applied to
compute the relationship of the two pixels i and j in FA:

D(i, j) = exp(−‖FA(i)− FA(j)‖
dA

), (8)

where dA is the channel dimension of feature map FA.
The training loss of affinity CNN is defined as:

LAff = LAc + λLAr. (9)

In Eq. (9), LAc is a cross-entropy loss which focuses on
using the annotated affinity labels as supervision:

LAc =−
1

|A+|
∑

(i,j)∈A+

LA(i, j)log(D(i, j))

− 1

|A−|
∑

(i,j)∈A−

(1− LA(i, j))log(1−D(i, j)),
(10)

where A+ is the node pair set with LA(i, j) = 1, A− is the
node pair set with LA(i, j) = 0. Operator | · | defines the
number of elements.

Note that only using the confident labels as supervision
is insufficient to train a CNN when only considering LAc

as loss function. In order to expand the labeled region to
unlabeled region, we propose an affinity regularized loss
LAr to encourage propagating from labeled pixels to its
connected unlabeled pixels. In other words, instead of only
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Fig. 4. Converting an image to a graph using our affinity CNN. During
inference, the given image will be converted to a graph, in which a node
is a pixel in the concatenated feature maps from the last three blocks
and its feature is the corresponding pixel feature. The weight of graph
edges is defined as the predicted affinity and they are represented as an
adjacency matrix, in which each row corresponds to all edges between
one node and all nodes.

considering pixel pairs in Rpair , we consider all pixel pairs
which satisfy the following formula:

RAr = {(i, j)| ‖Pos(i)− Pos(j)‖2 6 r} . (11)

Then the affinity regularized loss is defined as:

LAr =
HW∑
i=1

∑
(i,j)∈RAr

G(i, j)
‖(FA(i)− FA(j))‖

dA
, (12)

where G(·, ·) is a Gaussian bandwidth filter [1], which
utilizes the color and spatial information:

G(i, j) = exp(−‖Pos(i)−Pos(j)‖22σ2
xy

− ‖Cor(i)−Cor(j)‖2
2σ2

rgb
) · [i 6= j] , (13)

where Pos(i) and Pos(j) are the spatial positions of i and j,
respectively.Cor(·) is the color information and [·] is Iverson
bracket.

4.3.2 Convert Image to Graph

Usually, a graph is represented as G = (V,E) where V is
the set of nodes, and E is the set of edges. Let vi ∈ V denote
a node and Ei,j represents the edge between vi and vj . X ∈
RNg∗Dg is a matrix representing all node features, where
Ng is the number of nodes and Dg is the dimension of the
feature. In X , the ith feature, represented as xi, corresponds
to the feature of node vi. The set of all labeled nodes is
defined as V l, and the set of remaining nodes is represented
as V u, and V = V l ∪ V u.

During training, our affinity CNN uses the class-agnostic
affinity labels as supervision and learns to predict the rela-
tionship of pixels. During inference, given an image, our
affinity CNN will output V , X and E simultaneously for
a graph as shown in Fig. 4. Specifically, the node vi and
its feature xi corresponds to ith pixel and its all-channel
features in the concatenated feature map from the backbone.
For two nodes vi and vj , their edge Eij is defined as:

Eij =

{
D(i, j), if D(i, j) > σ

0, else
, (14)

where i and j are pixels in the feature map, and D(i, j) is
obtained from Eq. (8). Here we use a threshold σ (set as 1e-3
in our experiment) to make some low affinity edges be 0.
Finally, we generate the normalized features:

xi,j = xi,j/

Dg∑
j=1

(xi,j), (15)

where xi,j represents the jth value of feature xi and Dg is
the feature dimension.

4.4 Affinity Attention Layer

Effective GNN architectures have been studied in existing
works [22], [32], where most of them are designed based on
the assumption that the graph node and edge information is
100% accurate. However, in the BSSS task, it is not the case.
We propose a new GNN layer with attention mechanism
to mitigate this issue. As shown in Fig. 3, in the proposed
A2GNN, an affinity attention module is applied after the em-
bedding layer. The affinity attention module includes three
new GNN layers named affinity attention layers. Finally, an
output layer is followed to predict class labels for all nodes.

Specifically, we use a feature embedding layer followed
by a ReLU activation function in the first layer to map the
initial node features to the same dimension of the assigned
feature:

H1 = ReLU(XW 0), (16)

where X is the feature matrix defined in section 4.3.2 and
W 0 is the parameter set of the embedding layer. Then we
design several affinity attention layers to leverage the edge
weights:

H l+1 = P lH l, (17)

where P l ∈ RNG×NG , NG is the number of nodes. For node
vi, the affinity attention P l(i, j) from node vj is defined as:

P l(i, j) = softmax(wl cos(H l(i), H l(j)) + β[cos(H l(i), H l(j)) > 0]Eij)

=
exp

{
wl cos(H l(i), H l(j)) + β[cos(H l(i), H l(j)) > 0]Eij

}∑
vj∈S(i)

exp {wl cos(H l(i), H l(j)) + β[cos(H l(i), H l(j)) > 0]Eij}
, (18)

where l ∈ {1, 2, ..., L} is the layer index (L is set as 3 in our
model) of A2GNN and wl is the learning parameter. S(i) is
the set of all the nodes connected with vi (including itself).
[·] equals 1 when cos(·, ·) > 0 and otherwise equals 0. H l(i)
and H l(j) correspond to the features of vi and vj at layer l,
respectively. cos(·, ·) is used to compute the cosine similarity,
which is a self-attention module. Eij is the predicted edge
in Eq. (14). β is a weighting factor. The final output is:

O = softmax(HL+1WL+1), (19)

where WL+1 is the parameter set of the output layer.
Fig. 5 shows the flowchart of our affinity attention layer.

Compared to GCN layer [22] and AGNN layer [43], our
affinity attention layer makes full advantage of node simi-
larity and edge weighting information.
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4.5 Training of A2GNN

As described in section 4.2, we only select confident la-
bels as supervision, which is insufficient for the network
optimization. In order to address this problem, we impose
multiple supervision on our A2GNN. Specifically, we design
a new joint loss function, including a cross-entropy loss, a
regularized shallow loss [3] and a multi-point (MP) loss:

LG = Lce + Lmp + λ1Lreg, (20)

where Lce is the cross-entropy loss to use the labeled nodes
Mg generated in section 4.2. Lreg is the regularized loss
using the shallow feature, i.e., color and spatial position.
Lmp is the newly proposed MP loss to use the bounding
box supervision.

4.5.1 Cross Entropy Loss
Lce is the cross entropy loss, which is used to optimize our
A2GNN based on the labeled nodes Mg :

Lce = −
1

|V l|
∑
ci∈C
vj∈V l

[ci =Mg(vj)]log(O
ci(vj)), (21)

where V l is the set of all labeled nodes. Mg(vj) means
the label of node vj . |·| is used to compute the number of
elements. Oci(vj) is the predicted probability of being class
ci for node vj . V l is the set of labeled nodes.

4.5.2 Regularized Loss
Lreg is the regularized loss which explores the shallow
features of images. Here we use it to pose constraints based
on the image-domain information (e.g., color and spatial
position).

Lreg =
∑
ci∈C
va∈V

∑
cj∈C
vb∈V

G(va, vb)O
ci(va)O

cj (vb). (22)

In Eq. (22), va and vb represent two graph nodes. V is the
set including all nodes, and G(va, vb) is defined in Eq. (13).

4.5.3 Multi-Point Loss
Inspired by [7], we design a new loss term named multi-
point (MP) loss to acquire extra supervision from bounding
boxes. This is because the labeled nodes generated in sec-
tion 4.2 are scarce and not perfectly reliable, which could
be complemented by the bounding box information. The
MP loss is based on the following consideration. Assuming
all bounding boxes are tight, for a random row or column
pixels inside one bounding box, there is at least one pixel
belonging to the object, if we can find out all these nodes,
then we can label them with the object class and close up
their distance in the embedding space. Thus, MP loss makes
the object easy to be distinguished.

Specifically, for each row/column in the bounding box,
the node with the highest probability to be classified to
the bounding box class label is regarded as the selected
node. Following the same definition in section 3, suppose
the bounding box set in one image is B, then for arbitrary
bounding box Bj in B, firstly we need to select the highest
probability pixel for each row/column:

cosine distance for connected nodes

element-wise addition matrix multiplication

Hl

E

wl

Hl+1

softmaxPl

𝛽

Hl

Hl

[cos>0]

Fig. 5. Our proposed affinity attention layer. E is the adjacent matrix
which provides soft edges information. Hl is the input feature of the
layer andHl+1 is the output feature. P l is the computed affinity attention
matrix. wl is the learning parameter and β is the weighting factor. With
the attention mechanism and the soft edges, it can ensure accurate
feature propagation.

ilmmax = index( max
i∈Blm

j

(OBj (i))), (23)

where lm means the mth row/column, max
i∈Blm

j

(OBj (i))

means that for each row/column, we select the node which
has the highest probability to be classified as the same label
with Bj , index (·) returns the index of selected node. ilmmax is
the index of the selected node in the mth row/column.

Then the set that contains all selected nodes for the
bounding box Bj are defined as Kj :

Kj =
{
il1max, i

l2
max, i

l3
max, ..., i

l(w+h)
max

}
, (24)

where w and h represents the width and height of Bj ,
respectively. Then all selected nodes for all bounding boxes
are defined as K :

K = {K1,K2, ...,KM} , (25)

where M is the number of bounding boxes. Finally, the MP
loss is defined as:

Lmp = −
1

Np

∑
Kj∈K

∑
ki∈Kj

log(OBj (ki))+

1

Nf

∑
Kj∈K

∑
km∈Kj

kn∈Kj

[km 6= kn](d(H(km), H(kn))).
(26)

In Eq. (26), d(·, ·) is used to compute feature distance,
where we set d(·, ·) = 1 − cos(·, ·). H(km) and H(kn) cor-
respond to the features from the last affinity attention layer
HL+1 for node km and kn, respectively. Both Np and Nf are
the number of sum items. MP loss tries to pull the selected
nodes closer in the embedding space, while all other nodes
connecting with them will benefit from this loss. This is
because GNN layer can be regarded as a layer to aggregate
features from the connected nodes, it will encourage the
other connected nodes to share a similar feature with them.
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In other words, MP loss will make the nodes belonging
to the same object easy to be distinguished since they are
assigned to a similar feature in the embedding space. In
our model, we only enforce MP loss on Kj (Eq. (24)) rather
than all labeled nodes. This is because other nodes from Mg

still have noisy labels, and at the same time, the labeled
foreground nodes in Mg focus more on discriminative parts
of the object.

4.5.4 Consistency-Checking

As mentioned in section 4.2, although we select some
confident seed labels as supervision, noisy labels are still
inevitable. Considering that we provide some extra online
labels in our MP loss, which selects the highest probability
pixel in each row/column in the box as additional labels, we
assume that most additional labels in MP loss are correct,
then for each box, we first generate a prototype using the
feature of all additional labels inside the box:

H
Kj

P =
1

NKj

∑
ki∈Kj

H(ki), (27)

where HKj

P represents the prototype of the jth bounding
box and NKj is the number of the selected pixel.

Then for each bounding box, we compute the distance
between all selected confident seed labels in Eq. (5) and
the prototype, and finally the seed labels which are far
away from the prototype are considered as noisy label and
removed in each iteration:

MKj
g (i) =


M

Kj
g (i), if d(HKj (i), H

Kj

P ) > 0

and MKj
g (i) = LBj

255, else
, (28)

where M
Kj
g is the selected confident label map of the

jth bounding box (section 4.2), HKj is the corresponding
feature map for the jth bounding box from the last affinity
attention layer HL+1, and d(·, ·) is the operator to compute
the cosine distance.

5 IMPLEMENT DETAILS

To generate pixel-level seed label from image-level label, we
use the same classification network as SEAM [38], which is
a ResNet-38 [50]. All the parameters are kept the same as
in [38].

Our affinity CNN adopts the same backbone with the
above classification network. At the same time, dilated
convolution is used in the last three residual blocks and
their dilated rates are set as 2, 4 and 4, respectively. As in
Fig. 4, the output channels of these three residual blocks
are 512, 1024 and 4096. A node feature is a concatenated
feature of these three outputs, so the feature dimension for
one node is 5632. Since we need to use feature to compute
distance, three 1× 1 convolution kernels are used to reduce
the feature dimensions of these three residual blocks and
the output channels are set as 64, 128 and 256, respectively.
Finally, a 1×1 convolution kernel with 448 channels is used
to get the final feature map FA. Following [9], we set r = 5
for both training and inference. λ in Eq. (9) is set to 3 and
σxy = 6, σrgb = 0.1.

Our A2GNN has five layers as mentioned in section 4.4,
the output channel number for the first layer and three
affinity attention layers are 256. λ1 in Eq. (20) are set as 0.01.
In Lreg , we adopt the same parameters with Eq. (13). We
use Adam as optimizer [51] with the learning rate being 0.03
and weight decay being 5×10−4. During training, the epoch
number is 100 and the dropout rate is 0.5. The training
process will be divided into two stages: In the first stage
(the first 50 epochs), Lreg and consistency-checking are not
used while in the second stage, all losses and consistency-
checking are used. We use dropout after the first layer. We
use bilinear interpolation to achieve the original resolution
during training and inference. CRF [20] is used as the post-
processing method during inference. The unary potential of
CRF uses the final output probability O in Eq. (19) while
pair-wise potential corresponds to the color and spatial
position of different nodes. All CRF parameters are the
same as [9], [40]. Note that for the BSIS task, we need to
convert the above pseudo labels to instance masks. Given a
bounding box, we directly assign pixels which locate inside
a bounding box and share the same class with it to one
instance.

For the BSSS task, we take the Deeplab-Resnet101 [14],
PSPNet [45] and Tree-FCN [49] as our fully supervised
semantic segmentation models for fair comparison. For the
BSIS task, MaskR-CNN [16] is taken as the final instance
segmentation model and we use Resnet-101 as the back-
bone. Following the same post-processing with [7], we use
CRF [20] to refine our final prediction.

All experiments are run on 4 Nvidia-TiTan X GPUs. For
Pascal VOC 2012 dataset, generating the pixel-level seed
label takes about 12 hours, training affinity CNN spends
about 12 hours and generating the pseudo labels using
A2GNN takes about 16 hours.

6 EXPERIMENT

6.1 Datasets

We evaluate our method on PASCAL VOC 2012 [52] and
COCO [53] dataset. For PASCAL VOC 2012, the augmented
data SBD [54] is also used, and the whole dataset includes
10,582 images for training and 1,449 images for validating
and 1,456 images for testing. For COCO dataset, we train
on the default train split (80K images) and then test on the
test-dev set.

For Pascal VOC 2012 dataset, mean intersection over
union (mIoU) is applied as the evaluation criterion for
weakly supervised semantic segmentation, and the mean
average precision (mAP) [55] is adopted for weakly super-
vised instance segmentation. Following the same evalua-
tion protocol as prior works, we reported mAP with three
thresholds (0.5, 0.7, 0.75), denoting as mAPr0.5, mAPr0.7 and
mAPr0.75, respectively. For COCO dataset, following [56],
mAP, mAPr0.5, mAPr0.75, mAPs, mAPm and mAPl are re-
ported.

6.2 Comparison with State-of-the-Art

Weakly supervised semantic segmentation: In Table 1, we
compare the performance between our method and other
state-of-the-art approaches for BSSS. For using deeplab as
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TABLE 1
Comparison with other approaches on PASCAL VOC 2012 val and test sets for BSSS. F: fully supervised. S: scribble supervised. B: bounding box

supervised. Seg.: fully-supervised segmentation model

Method Pub. Seg. Sup. val mIoU (%) test mIoU (%)
w/o CRF w/ CRF w/o CRF w/ CRF

Deeplab-V1 [44] - - F 62.3 67.6 - 70.3
Deeplab-Vgg [14] TPAMI’18 - F 68.8 71.5 - 72.6
Deeplab-Resnet101 [14] TPAMI’18 - F 75.6 76.8 - 79.7
PSPNet [45] CVPR’17 - F 79.2 - 82.6 -
ScribbleSup [2] CVPR’16 Deeplab-Vgg S - 63.1 - -
RAWKS [46] CVPR’17 Deeplab-V1 S - 61.4 - -
Regularized Loss [3] ECCV’18 Deeplab-Resnet101 S 73.0 75.0 - -
Box-Sup [4] CVPR’15 Deeplab-V1 B - 62.0 - 64.6
WSSL [17] CVPR’15 Deeplab-V1 B - 60.6 - 62.2
GraphNet [21] ACMM’18 Deeplab-Resnet101 B 61.3 65.6 - -
SDI [5] CVPR’17 Deeplab-Resnet101 B - 69.4 - -
BCM [6] CVPR’19 Deeplab-Resnet101 B - 70.2 - -
Lin et al. [47] ECCV’18 PSPNet B - 74.3 - -
Box2Seg [30] ECCV’20 UperNet [48] B 74.9 76.4 - -
Box2Seg-CEloss [30] ECCV’20 UperNet [48] B 72.7 - - -
A2GNN (ours) TPAMI’21 Deeplab-Resnet101 B 72.2 73.8 72.8 74.4
A2GNN (ours) TPAMI’21 PSPNet B 74.4 75.6 73.9 74.9
A2GNN (ours) TPAMI’21 Tree-FCN [49] B 75.1 76.5 74.5 75.2

TABLE 2
Comparison with other approaches on PASCAL VOC 2012 val dataset

for BSIS.

Method Pub. Sup. mAPr
0.5 mAPr

0.7 mAPr
0.75

SDS [55] ECCV’14 F 49.7 25.3 -
MaskR-CNN [16] ICCV’17 F 67.9 52.5 44.9
PRM [57] CVPR’18 I 26.8 - 9.0
IRN [12] CVPR’19 I 46.7 23.5 -
SDI [5] CVPR’17 B 44.8 - 16.3
BBTP [7] NeurIPS’19 B 58.9 30.4 21.6
A2GNN (ours) TPAMI’21 B 59.1 35.5 27.4

the segmentation model, it can be seen that our approach
obtains 96.1% of our upper-bound with pixel-level supervi-
sion (Deeplab-Resnet101 [14] with CRF). Compared to the
other approaches, our approach gives a new state-of-the-
art performance. Specifically, our approach with deeplab-
resnet101 [49] outperforms Box-Sup [4], WSSL [17] by big
margins, approximately 11.8% and 13.2%, respectively. Be-
sides, compared to GraphNet [21], the only graph learn-
ing solution, our method with Deeplab-Resnet101 performs
much better than it, with an improvement of 10.9% for
mIoU (without CRF). We can also observe that our per-
formance is even better than SDI [5], which uses MCG
[18] and BSDS [19] as extra pixel-level supervision. When
using PSPNet [45] as the segmentation model, our approach
obtains 74.4% mIoU without CRF as post-processing, which
is even higher than the results in [47] with CRF. Finally,
our method with Tree-FCN [49] outperforms the state-of-
the-art Box2Seg [30] in this task. Note that Box2Seg focused
on designing a segmentation network using noisy label
from bounding box, thus our performance could be further
improved using their network as the final segmentation
network.

Weakly supervised instance segmentation: In Table 2,
we compare our approach to other state-of-the-art ap-
proaches on BSIS. It can be seen that our approach achieves
a new state-of-the-art performance among all evaluation
criteria. Specifically, our approach performs much better
than SDI [5], increasing 14.3% and 11.1% on mAPr0.5 and

mAPr0.75, respectively. It can also be found that compared to
BBTP [7], which is the state-of-the-art approach on this task,
our approach significantly outperforms it by large margins,
around 5.1% on mAPr0.7 and 5.8% on mAPr0.75. The per-
formance is increased more on mAPr0.75 than mAPr0.7 and
mAPr0.5, which also indicates that our approach can produce
masks that preserve the object structure details. One inter-
esting observation is that our approach even achieves better
performance than the fully supervised method SDS [55].

In Fig. 6, we compare some qualitative results between
our approach and other state-of-the-art approaches for
which the source code is publicly available. Specifically, we
compare our results with SDI [5]1 for the BSSS task and
BBTP [7]2 for the BSIS task. It can be seen that compared to
other approaches, our approach produces better segmenta-
tion masks covering object details.

In Table 3, we make a comparison between our approach
and others on COCO test-dev dataset. It can be seen that
our approach performs much better than LIID [61], with
an increase of 16.8% on mAPr50. Furthermore, our approach
even performs competitive with fully-supervised approach
MNC [60], which also indicates the effectiveness of our
approach.

6.3 Ablation Studies
Since the pseudo labels for BSIS are generated from the BSSS
task, in this section, we will conduct ablation studies only
on the BSSS task. We simply evaluate the pseudo label mIoU
on the training set, without touching the val and test set.

In Fig 7, we make a comparison between our A2GNN
and others for BSSS. It can be seen that our A2GNN per-
forms much better than other GNNs, with an improvement
of 1.9% mIoU over AGNN [32] when only using the cross-
entropy loss, and the full A2GNN outperforms AGNN [32]
by a large margin (6.9%).

In Table 4(a), we explore the influence of different mod-
ules in our approaches to generate pseudo labels. Baseline

1. we use a re-implement code from: github.com/johnnylu305
2. github.com/chengchunhsu/WSIS BBTP

https://github.com/johnnylu305/Simple-does-it-weakly-supervised-instance-and-semantic-segmentation
https://github.com/chengchunhsu/WSIS_BBTP
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TABLE 3
Comparison with other approaches on COCO test-dev dataset for weakly supervised instance segmentation. E: extra dataset [58] with

instance-level annotation. S4Net: salient instance segmentation model [59].

Method Pub. Sup. mAP mAPr
0.5 mAPr

0.75 APs APm APl

MNC [60] CVPR’16 F 24.6 44.3 24.8 4.7 25.9 43.6
Mask-RCNN [16] ICCV’17 F 37.1 60.0 39.6 35.3 35.3 35.3
Fan et.al. [56] ECCV’18 I+E+S4Net 13.7 25.5 13.5 0.7 15.7 26.1
LIID [61] TPAMI’20 I+E+S4Net 16.0 27.1 16.5 3.5 15.9 27.7
A2GNN (ours) TPAMI’21 B 20.9 43.9 17.8 8.3 20.1 31.8

(a)

(b)

(d)

(e)

(c)

(f)

Fig. 6. Qualitative results of our A2GNN and other state-of-the-art approaches on PASCAL VOC 2012 val dataset. (a) Original image. (b) Ground
truth of semantic segmentation. (c) SDI [5] for BSSS. (d) Our results for BSSS. (e) BBTP [7] for BSIS. (f) Our results for BSIS.

GCN [22] GAT [61] AGNN [32] A2GNN (CE) A2GNN (full)
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Fig. 7. Comparison between our A2GNN and other GNNs (GCN [22],
GAT [62], AGNN [32]) on Pascal VOC 2012 training set. “CE” means
only cross-entropy loss is used.

means that we use SEAM [38] to generate the foreground
seed labels and then use bounding box supervision to gen-
erate the background. RW means that we follow SEAM [38]
to use random walk for pseudo label generation. It can be
seen that the proposed approach outperforms the baseline

by a large margin. And each module significantly improves
the performance.

In Table 4(b), we study the effectiveness of our joint loss
function. It can be seen that compared to A2GNN which
only adopts cross-entropy loss, our MP loss can improve
its performance by 2.1%, validating the effectiveness of
our MP loss. With consistency-checking, the performance is
improved to 77.2%, indicating the effectiveness of our pro-
posed consistency-checking mechanism. When jointly opti-
mized by these three losses with our consistency-checking
mechanism, the performance is further improved to 78.8%.

In Table 4(c), we study different ways to build our graph.
Superpixel (S.P.) means that we adopt [21] to produce graph
nodes and their features. Distance (Dis.) means that we build
the graph edge using L1 distance of feature map [21]. It
can be seen that the performance is improved when directly
using pixel in the feature map as the node, suggesting that
it is more accurate than using superpixel. When we use our
affinity CNN to build the graph, the performance is signif-
icantly improved by 4.1%, which shows that our approach
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TABLE 4
Ablation studies on Pascal VOC 2012 training dataset for BSSS.

(a) Evaluation for different modules in our approach. RW:random
walk [38]. H: affinity attention layer. C.C.: consistency-checking.

Baseline affinity CNN RW A2GNN mIoULAc LAr H Lreg Lmp C.C.
X 62.3
X X X 70.3
X X X X 71.3
X X X X 73.8
X X X X X 74.9
X X X X X X 78.1
X X X X X X X 78.8

(b) Evaluation for the loss functions of our A2GNN.
C.C.: consistency-checking.

Lce Lreg Lmp C.C. mIoU (%)
X 73.8
X X 74.9
X X 75.9
X X X 77.2
X X X 78.1
X X X X 78.8

(c) Evaluation for different methods to build
the graph. S.P.: superpixel. Feat.: feature map.
Dis.: distance. Aff: affinity CNN.

S.P. Feat. Dis. Aff. mIoU(%)
X X 73.3

X X 74.7
X X 78.8

(d) Evaluation of the
affinity attention layer in
A2GNN.
A2GNN layer mIoU(%)cos(·) edge
X 73.1

X 77.3
X X 78.8

(e) Performance comparison for us-
ing different seed labels on affinity
CNN and the loss functions.
LAc LAr MF Mg mIoU
X X 74.5
X X 71.7
X X X 76.1
X X X 78.8

can build a more accurate graph than other approaches.
In Table 4(d), we study the effectiveness of our affinity

attention layer. It can be found that if we use either the
attention module or the affinity module separately, the
mIoU score is lower than that of the full A2GNN, which
indicates the effectiveness of our designed GNN layer.

In Table 4(e), we show the joint influence of the loss
functions and labels for our proposed affinity CNN. It can
be seen that when only using LAc, MF labels perform
better than Mg . This is because that Mg only provides
limited pixels and these pixels are usually located at the
discriminative part of an object (such as the human head).
Such limited labels are not sufficient when only using LAc.
When we use both LAc and LAr , Mg performs much better
than MF , indicating that LAr can accurately propagate the
labeled regions to unlabeled regions.

In addition, we also analyze the influence of supervision
for our A2GNN. Specifically, we make a comparison of the
results when using MF (in Eq. (4)) and Mg (in Eq. (5))
as supervision for our A2GNN, respectively. Compared to
MF , Mg has fewer annotated nodes but each annotation is
more reliable. The mIoU score on Pascal VOC 2012 training
set is 73.2% and 78.8% for MF and Mg , respectively. This
result validates the effectiveness of the leverage of the high-
confident labels.

7 APPLICATION TO OTHER WEAKLY SUPERVISED
SEMANTIC SEGMENTATION TASKS

In order to use our approach on other weakly supervised
semantic segmentation tasks, e.g., scribble, point and image-
level, we need to ignore our proposed MP loss (section 4.5.3)
and the consistency-checking (section 4.5.4) as they rely
on bounding box supervision. Besides, we need to convert
different weak supervised signals to pixel-level seed labels.
All other steps and parameters are the same as that in the
BSSS task. In the following section, we will introduce how to
convert the different weakly supervised signal to pixel-level
seed labels, and then we will report experimental results on
these tasks.

TABLE 5
Comparison with other state-of-the-arts on PASCAL VOC 2012 val and

test datasets. Sup.: Segmentation model. F: fully supervised. S:
scribble. P: point. I: image-level label. E: extra salient dataset.

“highlight” means the best performance for a specific task.

Method Pub. Seg. Sup. val test
(1) Deeplab-V1 [44] - - F 67.6 70.3
(2) Deeplab-Vgg [14] TPAMI’18 - F 71.5 72.6
(3) Deeplab-Resnet [14] TPAMI’18 - F 76.8 79.7
(4) WiderResnet38 [50] PR’19 - F 80.8 82.5
(5) Tree-FCN [49] NeurIPS’19 - F 80.9 -
RAWKS [46] CVPR’17 (1) S 61.4 -
ScribbleSup [2] CVPR’16 (2) S 63.1 -
GraphNet [21] ACMM’18 (3) S 73.0 -
Regularized loss [3] ECCV’18 (3) S 75.0 -
A2GNN (ours) TPAMI’21 (3) S 74.3 74.0
A2GNN (ours) TPAMI’21 (5) S 76.2 76.1
What’s the point [8] ECCV’16 (2) P 43.4 43.6
Regularized loss [3] ECCV’18 (3) P 57.0 -
A2GNN(ours) - (3) P 66.8 67.7
AE-PSL [63] CVPR’17 (1) I+E 55.0 55.7
DSRG [26] CVPR’18 (3) I+E 61.4 63.2
FickleNet [64] CVPR’19 (3) I+E 64.9 65.3
Zhang et.al [65] ECCV’20 (3) I+E 66.6 66.7
ICD [39] CVPR’20 (3) I+E 67.8 68.0
EME [66] ECCV’20 (3) I+E 67.2 66.7
MCIS [67] ECCV’20 (3) I+E 66.2 66.9
ILLD [61] TPAMI’20 (3) I+E 66.5 67.5
ILLD [61] TPAMI’20 (3)† I+E 69.4 70.4
A2GNN(ours) TPAMI’21 (3) I+E 68.3 68.7
A2GNN(ours) TPAMI’21 (3)† I+E 69.0 69.6
PSA [9] CVPR’18 (4) I 61.7 63.7
SEAM [38] CVPR’20 (4) I 64.5 65.7
ICD [39] CVPR’20 (3) I 64.1 64.3
BES [68] ECCV’20 (3) I 65.7 66.6
SubCat [69] CVPR’20 (3) I 66.1 65.9
CONTA [70] NeurIPS’20 (4) I 66.1 66.7
A2GNN(ours) TPAMI’21 (3) I 66.8 67.4
† means using Res2Net [71] as the backbone.

7.1 Pixel-level Seed Label Generation

As mentioned in section 3, the common practice to initialize
weakly supervised task is to generate pixel-level seed labels
from the given weak supervision. For different weakly
supervision, we use different approaches to convert them
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Fig. 8. Qualitative results of our A2GNN on PASCAL VOC 2012 val dataset. We show the results from different levels of supervision signals (3rd –
6th rows). Stronger supervision signals (e.g., scribble) produce more accurate results than weaker signals (e.g., point, image-level label).

to pixel-level seed labels.
Image-level supervision: we directly use M ′I defined in

Eq. (5) to train our affinity CNN and use it as Mg to train
our A2GNN. The final pseudo labels are generated using the
ratio (1:3) to fuse our results and the results of random walk.

Scribble supervision: For the scribble supervised se-
mantic segmentation task, for each class in an image (in-
cluding background), it provides one or more scribbles as
labels. Superpixel method [23] is used to get the expanded
labels MS from the initial scribbles. To get seed label to
train our affinity CNN, we merge MS with M ′I using the
following rule: if the pixel label in MS is known (not 255),
the corresponding label in Mg will be the same label as MS .
Otherwise, the pixel label will be treated as the same label
as M ′I . To generate the node labels for A2GNN, we directly
use Mg = MS since it provides accurate labels for around
10% pixels in an image.

Point supervision: For point supervised semantic seg-
mentation, for each object in an image, it provides one point
as supervision and there is no annotation for background.
To train our affinity CNN, we used M ′I directly. To generate
node supervision for A2GNN, we use a superpixel method
[23] to get the expanded label MP from initial point labels.
Then Mg is generated using the same setting with the
scribble task.

For our affinity CNN and our A2GNN, we use the same
setting with our bounding box task.

7.2 Experimental Evaluations
In Table 5, we compare the performance between our
method and other state-of-the-art weakly supervised se-
mantic segmentation approaches.

For point supervision, our method achieves state-of-the-
art performance with 66.8% and 67.7% mIoU on the val
and test set of PASCAL VOC, respectively. Compared to
other two approaches [8] and [3], our method increases

TABLE 6
Performance comparison in mIoU (%) for evaluating the pseudo labels

on the PASCAL VOC training data set.

Method Pub. Sup. mIoU (%)
PSA [9] CVPR’18 I 58.4
ICD [39] CVPR’20 I 62.2

SubCat [69] CVPR’20 I 63.4
SEAM [38] CVPR’20 I 63.6

A2GNN (ours) TPAMI’21 I 65.3
A2GNN (ours) TPAMI’21 I+E 66.5
Box2Seg [30] ECCV’20 B 73.6*

A2GNN (ours) TPAMI’21 B 78.8
* Reproduce by ourself.

23.4% and 9.8% in mIoU on PASCAL VOC 2012 val dataset,
respectively.

For the image-level supervision task, our A2GNN
achieves mIoU of 66.8% and 67.4% on val and test set,
respectively. It should be noticed that PSA [9], SEAM [38]
and CONTA [70] apply Wider ResNet-38 [50] as segmenta-
tion model, which has a higher upper-bound than Deeplab-
Resnet101 [14]. Using Deeplab-Resnet101 [14] as the seg-
mentation, Subcat [69] is the state-of-the-art approach on
this task, but it require multi-round training processes.
Moreover, our method achieves 66.8% mIoU using Deeplab-
Resnet101 [14], being 87.0% of our upper-bound (76.8%
mIoU score with Deeplab-Resnet [14]) on val set.

Besides, for the image-level supervision, some ap-
proaches [26], [39], [61], [64] used salient model with extra
pixel-level salient dataset [72] or instance pixel-level salient
dataset [58] to generate more accurate pseudo labels. Follow
these approaches, we also use saliency models. Specifically,
we use the saliency approach [73] following ICD [39] to
produce the initial seed labels, and then use our approach
to produce the final pseudo labels. It can be seen from
Table 5 that our approach outperforms other approaches
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(using ResNet101 as the backbone).Following ILLD [61],
we also evaluate our approach using Res2Net [71] as the
segmentation backbone, and our performance is further
improved to 69.0% and 69.6%. For this setting, we have not
designed any specific denoising scheme for the seed labels.
Nevertheless, our performance is comparable with other
state-of-the-art methods, e.g., [61], which also proves that
our method can be well generalized to all weakly supervised
tasks.

For the scribble supervision task, our method also
achieves a new state-of-the-art performance.

In Table 6, we present a comparison to evaluate the
pseudo labels on the PASCAL VOC training set. It can
be seen that our approach outperforms other approaches.
Compared to the state-of-the-art approach SEAM [38], our
approach obtains 1.7% mIoU improvement. We also com-
pare the quality of the pseudo labels between our approach
and Box2Seg [30]. It can be seen that our method outper-
forms Box2Seg [30] by a large margin, with 5.2% mIoU
improvement.

In Fig. 8, we also present more qualitative results for the
above three tasks. It can be seen that stronger supervision
leads to better performance and preserves more segmenta-
tion details.

8 CONCLUSION

We have proposed a new system, A2GNN, for the bounding
box supervised semantic segmentation task. With our pro-
posed affinity attention layer, features can be accurately ag-
gregated even when noise exists in the input graph. Besides,
to mitigate the label scarcity issue, we further proposed a
MP loss and a consistency-checking mechanism to provide
more reliable guidance for model optimization. Extensive
experiments show the effectiveness of our proposed ap-
proach. In addition, the proposed approach can also be
applied to bounding box supervised instance segmentation
and other weakly supervised semantic segmentation tasks.
As future work, we will investigate how to generate more
reliable seed labels and more accurate graph, so that the
noise level in the input graph can be alleviated and therefore
our A2GNN can produce more accurate pseudo labels.
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