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FormNet: Formatted Learning for Image Restoration
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Rynson W.H. Lau, Senior Member, IEEE, and Thomas S. Huang, Life Fellow, IEEE

Abstract—In this paper, we propose a deep CNN to tackle the
image restoration problem by learning formatted information.
Previous deep learning based methods directly learn the mapping
from corrupted images to clean images, and may suffer from the
gradient exploding/vanishing problems of deep neural networks.
We propose to address the image restoration problem by learning
the structured details and recovering the latent clean image
together, from the shared information between the corrupted
image and the latent image. In addition, instead of learning the
pure difference (corruption), we propose to add a residual for-
matting layer and an adversarial block to format the information
to structured one, which allows the network to converge faster
and boosts the performance. Furthermore, we propose a cross-
level loss net to ensure both pixel-level accuracy and semantic-
level visual quality. Evaluations on public datasets show that the
proposed method performs favorably against existing approaches
quantitatively and qualitatively.

Index Terms—Image restoration, format, residual, GAN, CNN.

I. INTRODUCTION

A lot of image processing algorithms/applications assume
the input images to be clean and of high-resolution.

However, in practice, these images may suffer from corruption,
e.g., noise, or low resolution due to the limitation of digital
imaging. The image restoration task aims to handle this
problem and recover the latent clean image, including image
denoising, super-resolution, artifact removal, etc. In general, a
corrupted image IC can be modeled as the latent clean image
I added by a certain type of corruption C. Image restoration
aims to recover clean image I by separating it from corruption
C. Hence, if C can be accurately estimated, I can then be well
recovered. Notwithstanding the demonstrated success, most of
the traditional image restoration methods are task-specific and
cannot be easily adapted to different tasks.

In recent years, deep convolutional neural networks (CNNs)
have become very popular in solving many high-level vision
problems. There are also some emerging works applying
CNNs to low-level vision tasks like image denoising [1], [2],
by directly learning the mapping function from a noisy image
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Fig. 1. Illustration of the proposed FormNet on image restoration tasks such
as denoising, super-resolution, rain removal, and depth enhancement.

to its clean version. However, learning such a dense mapping
is prone to the gradient vanishing/exploding problems of deep
CNNs [3], [4]. Besides, most existing CNN-based methods
train the networks based on the pixel-level `2 norm (or Mean
Square Error, MSE) objective, which can easily result in blur
artifacts in the final inference.

To resolve the above problems, we start with modeling
the image restoration problem as learning the residual, in
which the corruption is considered as “residual information”
between the clean image and its corrupted version. However,
learning the residual solely usually results in remaining ar-
tifacts. We observe that the clean image and the corrupted
image share similar information in most homogeneous regions,
but differ more in highly-structured (e.g., textured) regions.
Since both the structured regions and corruptions are high-
frequency signals in most cases, directly learning the high-
frequency residual is similar to approximating a low-pass filter,
and the highly-structured details in the latent image are also
filtered out (see Section III-B). Thus, we further propose to
extend the baseline network to learn the formatted residual
information. To this end, we add a residual formatting layer to
format the residual to sparsely distributed and more structured
information, which is favored by deep residual learning [4].
The highly structured details can then be reconstructed in the
following layers.

We further introduce a cross-level loss net to reduce the
artifacts caused by the conventional pixel-level `2 norm. Two
gradient layers are added to model the loss in the gradient
domain. Besides, high-level similarity measured in the feature
domain is taken into consideration, which helps improve
the visual quality of the final result. Adversarial learning is
also incorporated to format the distribution. We refer to the
final framework as FormNet. In this paper, we present two
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variants of FormNet, FormResNet and FormGAN, where their
objective functions differs. Fig. 1 shows example applications
of the FormNet. Extensive evaluation on public datasets shows
that the proposed framework performs favorably against the
state-of-the-art denoising and other image restoration methods.

A preliminary version of this work was presented in [5]. In
comparison to our earlier work, this journal version provides
additional analysis on the proposed model, further tuning, and
more experimental results. In addition, we further formulate
the model into a generative adversarial framework. Experimen-
tal results show that the new model reinforces the perceptual
visual quality of the image restoration task. Code is publicly
available online1.

The main contributions of this work include:

1) We design a new deep neural network to learn the for-
matted residual information to reconstruct the structural
details for image restoration.

2) We propose a cross-level loss net that supervises the
network based on both pixel-level and high-level sim-
ilarities, resulting in better visual quality compared to
traditional MSE-based loss.

3) We incorporate the adversarial learning into the pro-
posed model to set a discriminative objective for a better
perceptual quality.

4) Experimental evaluation on the Set14[6], BSD[7] and
Kodak2 datasets shows that the proposed approach per-
forms favorably against state-of-the-art methods. In ad-
dition, the proposed method works well across different
noise levels and noise types in a single model, and is
shown to be able to handle other image restoration tasks.

The remainder of the paper is organized as follows: Sec-
tion II presents the related work to our method. Section III
introduces the proposed method in details. Detailed analysis
on the network properties is performed in Section IV, followed
by extensive experimental evaluations in Section V. Finally,
the paper is concluded in Section VI.

II. RELATED WORK

A. Image Restoration

Image restoration is a widely studied problem in computer
vision and remains an active area. Extensive studies have been
conducted to solve the problem in the past decades. We refer
the readers to a survey [8] on image restoration for more
details. Generally, these methods can be categorized into single
image based methods and multiple image based methods.
Single image based methods like BM3D [9] utilizes non-local
information from the corrupted image itself to remove artifact
like noise. As image restoration is an ill-posed problem, image
priors learned from external dataset (multiple images) are also
widely used [10], [11], [12], [13], [14], [15] to reconstruct
the latent clean image. Usually the above methods focus on
a specific kind of corruptions and the result image tend to be
over-smoothed.

1https://bitbucket.org/JianboJiao/formnet/
2http://r0k.us/graphics/kodak/index.html

B. Deep Learning for Image Restoration

In recent years, CNN has been applied to multiple low-level
vision problems, including image filters [16], [17], [18], super-
resolution [19], [20], denoising [2], [21], deconvolution [22],
[23], image compression [24], stereo matching [25], optical
flow [26], among others. Xie et al. [21] combine sparse coding
and deep networks to handle problems like complex pattern
removing in image inpainting and denoising. Burger et al. [2]
learn a plain multi-layer perceptron based on a large dataset
for denoising, and obtain competitive results to BM3D. Since
then, other multi-layer models [27], [28], [29], [30] are also
proposed for image restoration.

Although promising result has been achieved, most of these
methods focus on learning the dense mapping from observed
image to the target one directly, while for many image restora-
tion problems such mapping is close to an identical mapping,
which is difficult to learn and prone to the gradients van-
ishing/exploding problems [3], [4], [20]. The recent proposed
residual learning scheme [4] aims to solve such problems in
deep neural networks and achieves superior performance on
various high-level problems like classification, detection, seg-
mentation, etc. For low-level problems, residual learning has
also shown its effectiveness in single image super-resolution
[20], in which a very deep network is learned efficiently
with the help of residual learning. A recent work [31] adopts
the same global residual structure [20] for image denoising
and achieves promising results. Instead of using residual
structure, Zhang et al. [32] propose to train a plain CNN but
taking the noise-level map as an additional input. Dong et
al. [33] propose a new architecture that iteratively combines
multiple denoiser modules and back-projection modules. Liu
et al. [34] integrate the wavelet transform to a CNN for a
better tradeoff between receptive field size and computational
efficiency. Besides CNN-based approaches, other learning-
based architectures are also explored for image denoising,
e.g., reinforcement learning [35] and recurrent network [36].
More recent work also propose to study the learning-based
blind denoising problem by synthesizing realistic noisy-clean
training pairs and including real noisy images to the CNN
training [37], [38]. Unlike previous learning-based approaches
that either stack several blocks or directly learn the difference,
we propose a simple architecture by introducing a residual
formatting layer to model stochastic residual information into
a more structured one. It can handle different noise types and
noise levels in a single network and generalizes well to other
image restoration tasks. To our knowledge, this is the first
approach to tackle multiple noise types and noise levels in a
single model.

C. Objective Function

As CNN based methods are data-driven, an objective/loss
function is necessary to constrain the training process. Usu-
ally the objective is to minimize a `2 norm (or MSE) loss
L = ‖T − I‖2 which is used to measure the difference
between the network inference I and the target label T .
For regression problems like image restoration, such kind of
`2 norm has been widely used in the literature [16], [17],

https://bitbucket.org/JianboJiao/formnet/
http://r0k.us/graphics/kodak/index.html
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(a) Noisy image (b) Inference by
DiffResNet

(c) Remained residual (d) Inference by
FormResNet

Fig. 2. Different residual information. (a) is a noisy image corrupted by
Gaussian noise with σ = 25; (b) is the inference output of DiffResNet,
which includes both the noise and high-structured regions; (c) is the difference
between the ground-truth noise and (b); (d) shows the inference from Form-
ResNet. High-structured details (c) are also removed when doing denoising
(subtract (b) from (a)) by DiffResNet while (d), after the formatting layer,
well recovers the structured details.

[20], [31]. However, the `2 norm is prone to result in over-
smoothed artifact. While most deep learning methods focus
on handcrafting the network structure, little attention has been
paid on the design of loss function. In [39], Gatys et al. use
the feature maps extracted from a basic CNN to model the
loss function for image style transfer. As pixel-wise accuracy
fails to capture the perceptual similarity for the application
of style transfer, the feature map based objective function
leads to a good visual quality. The recent popular Generative
Adversarial Network (GAN) [40], [41] directly uses a CNN
which named discriminator to supervise the training process
of the front generator network. Such ingenious structure not
only supervises the generator training but also improves the
objective part (discriminator) simultaneously. However, the
pixel-wise accuracy is not guaranteed and the training of such
GANs is unstable. In this paper, we propose a new stable
cross-level loss net that integrates pixel-level and semantic-
level similarities, so that both pixel-wise accuracy and high-
level visual quality are guaranteed.

III. PROPOSED METHOD

In many image restoration tasks, the observed image is
similar to the target latent one. Taking denoising as an ex-
ample, the “difference” between noisy image and clean image
is the pure noise itself. We observe that most homogeneous
regions in the corrupted image and clean image share similar
low-frequency information, while the highly-structured (high-
frequency) regions between them are relatively different. Due
to the inherently different properties in these two regions,
learning the difference map only cannot well reconstruct the
high-frequency regions, which is illustrated in Fig. 2(c). As a
result, we bias the learning process to structured regions, while
the homogeneous regions are mainly handled by a formatting
layer. In this way, the residual after formatting layer refers
to the structure or fine details of the image (Fig. 2(d)). As
a reference, we first construct a baseline network to learn
the difference between the corrupted image and the target
image. Details are given in Section III-A. We introduce the
proposed formatted residual learning in Section III-B. Then we
describe the adversarial and cross-level loss in Section III-C
and Section III-D, respectively.
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Fig. 3. Performances for residual learning. We compare FormResNet with and
without the proposed cross-level loss net, DiffResNet, and NoRes (training
without residual learning).

A. Learning the Difference

Conventional CNN-based methods usually learn the map-
ping from corrupted image to clean image directly [19], [22],
[2]. Whereas during the training of deep neural networks,
all the image details require to be preserved through many
layers. This is prone to the gradient vanishing and exploding
problems [3], [4], [20]. Thus we first present the approach
of learning the residual mapping Ĉ = f(IC) in which only
sparse residual information needs to be learned. We name this
network as DiffResNet which consists of fully convolutional
layers and a skip connection from the network input to the
inference. A similar structure is proposed in [31]. A group of
convolutional (conv.) layers with rectified linear unit (ReLU)
are used in the DiffResNet (more details please refer to
Sec. V-A). The input of the network is the corrupted image,
and the inference is the residual, i.e., corruption. The inference
is subtracted from the corrupted input to form the loss function
as 1

2‖I − (IC − f(IC))‖2. By minimizing this objective over
the training set {I(i)C , I(i)}Ni=1 the parameters of the model can
be learned.

B. Learning the Formatted Residual

Due to learning the residual instead of dense mapping, the
above DiffResNet architecture is shown to achieve better per-
formance and converge faster than previous “direct learning”
(Fig. 3). Such DiffResNet can be considered as approximating
a low-pass filter. The advantage of low-pass filter is that the
high-frequency artifact (e.g., noise) can be filtered, whereas
the drawback is also the “low-pass” property. Besides the
artifact, other high-frequency information (structures, edges,
etc.) is also filtered out. Thus the latent highly-structured
regions are difficult to be recovered, as shown in Fig. 2(c).
This is because the high-frequency structured regions present
inherently different properties to the homogeneous regions.

As a result, we propose a new framework, FormResNet, to
handle this problem, and the network architecture is shown in
Fig. 4. Specifically, we add a residual formatting layer (orange
part in Fig. 4) to transform the residual into more structured
representation. This format operation can be also considered
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Fig. 4. (a) The proposed network structure, in which the formatting layer (orange block) can be either traditional approaches or deep neural networks. (b)
shows an example of formatting layer as CNNs. The cross-level loss incorporates pixel-wise `2 norm, gradient consistency, and semantic high-level features.
(c) Adversarial learning (blue block) is included to achieve a perceptually better visual reconstruction. ⊕ denotes pixel-wise addition.

as a pre-processing of the corrupted images. Different from
the original scenario, where DiffResNet learns the residual,
i.e., the pure difference between the corrupted images and
the latent images, now the residual formatting layer allows
our model to learn the modified residual, which appears
to be spatially more structured, between the pre-processed
images and the latent images. That is, the pre-processing step
“formats” the residual.

The residual formatting layer is a non-linear operator. It can
be constructed by either conventional methods (e.g., BM3D)
or parametric models (e.g., neural networks as shown in Fig. 4
(b)). If conventional methods are adopted, the layer is treated
as a fixed function and will not be trained together with the
following network weights. If the operator is implemented
using neural networks, it can be jointly trained with the fol-
lowing layers. Through this formatting layer, the residual map
lies more on the image details, instead of random distributed
noise. As shown in Fig. 2(d) and Fig. 4, the formatted residual
is much sparser than the previous random one, with most
regions closer to zero and residual lies in highly-structured
regions. The rest part of the network is similar to DiffResNet
with several weight layers. The proposed formatting layer well
removes high-frequency corruption in homogeneous regions,
while the structured regions are left to the remaining part
of the network. In this way, the framework takes advantage
from both low-pass filter and high-pass filter. When taking
neural network as the formatting layer, the FormResNet can
be represented in a recursive fashion: y[k] = x[k] + y[k − 1]
where y[k] is the output of the kth formatting layer and x[k]
is the learned formatted residual. Fig. 4 shows the structure
when k = 2. In this fully convolutional version, the formatting
layer is jointly trained with other layers end-to-end.

C. Format the Distribution by Adversarial Learning

In addition to the formatting in the pixel-wise spatial
domain, we also propose to format the distribution of the
model inference to be similar to that of natural clean images.
Adversarial learning [40] is included to achieve the goal. It

Latent clean image (PSNR/SSIM) DiffResNet (27.21/0.6879)

FormResNet w/o cross-level loss
(28.80/0.7716)

FormResNet w/ cross-level loss
(29.09/0.7778)

Fig. 5. Visual comparison between DiffResNet and FormResNet. The
experiment setups are the same as in Fig. 3.

generally solves a minimax problem defined as:

min
G

max
D

EI∼pclean(I)[logD(I)]+

EIC∼pG(IC)[log(1−D(G(IC)))],
(1)

where D is a discriminator and G is a generator. By taking the
above equation as an objective during the network training,
the inference of the FormResNet (here the generator G in
Eq. 1) is judged by the discriminator D so that the G
network is encouraged to predict more perceptually superior
results. Specifically, we add a discriminator network (blue
part in Fig. 4) at the end of the FormResNet to discriminate
the recovered output and the latent clean images. The new
architecture with adversarial learning is termed as FormGAN.
LeakyReLU is used with α = 0.2 following [42]. The filter
kernel size increases from 64 to 512 with 4 convolution layers.
The final feature maps are followed by a dense layer and a
sigmoid function to achieve the classification probability.

D. Cross-level Loss Net

Computers process images in a “pixel-to-pixel” manner,
while we humans see more semantic information. In most
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feature-level loss φ
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Fig. 6. Illustration on the network structure used for feature-level loss.

CNN-based methods, when measuring the quality of image,
a pixel-wise similarity (e.g., `1 norm, MSE) is adopted as
the loss function. Whereas in practice we not only count
on pixel-wise performance, but care more about the visual
quality in many situations. In addition, only using MSE loss
can usually get blurry images, as shown in Fig. 5. Thus in
this paper we also consider high-level visual information for
the loss description, and propose a cross-level loss function
that combines both the pixel-level information and high-level
semantic features, to supervise the FormResNet training.

Let x be the corrupted image and y the latent clean image
and F (·) as the formatting function in the residual formatting
layer. Then the pixel-level loss can be defined as:

Lpix =
1

2N

N∑
i=1

∥∥r −R(xi)∥∥2, (2)

where r = y−F (x) is the ground-truth residual image, R(xi)
is the estimated residual by the network, and N is the number
of training pairs.

For high-level loss, we first leverage the feature map
extracted from a stack of convolutional layers φ, which is
part of a pre-trained network used for high-level vision.
These convolutional layers are concatenated to the end of our
FormResNet. The feature-level loss part is inspired by [39],
[43] which optimize a style transfer problem by minimizing
the difference between feature maps. An illustration of the
utilized feature extraction network structure is shown in Fig. 6.
As φ is only used to extract feature maps for loss computation,
all the parameters in φ are fixed instead of simultaneously
learning with the main body as in [39]. Denote φl as the feature
map after the l-th ReLU layer of φ, and the dimension of φl
as Wl × Hl × Cl where W,H,C are the width, height, and
number of channels respectively. Then the feature-level loss is
defined as:

Lft =
1

2N

N∑
i=1

1

W i
lH

i
lC

i
l

∥∥φl(yi)− φl(ŷi)∥∥2, (3)

where ŷ = F (x) + r̂ is the recovered image. In addition,
information in gradient domain is also leveraged as a high-
level loss term:

Lgd =
1

2N

N∑
i=1

∣∣∇h(y
i)−∇h(ŷ

i)
∣∣+ ∣∣∇v(y

i)−∇v(ŷ
i)
∣∣,
(4)

where ∇h and ∇v indicate the horizontal and vertical gradi-
ents. The gradient loss term is achieved by two Sobel layers
concatenated to the end of FormResNet. By combining the
above pixel-level and high-level loss components together, we
get the final cross-level loss net:

Lc = (1− α− β) · Lpix + α · Lft + β · Lgd, (5)

where α, β are balancing weights for the corresponding
components.

IV. NETWORK PROPERTIES

In this section, we study the properties of the proposed
network, including the effectiveness of formatted residual
learning, format layer analysis, loss components, network
depth and the extension to learn multiple corruptions in a
single model.

A. Formatted Residual Learning

Residual learning is suitable for image restoration as in
many restoration problems the corrupted image and its cor-
responding latent image are highly correlated. However, the
difference between the corrupted and latent images varies for
different problems. It is not that easy to directly apply the same
structure (e.g., [20]) to different tasks. As a result, we show
the effect of FormResNet compared to learning the difference
(DiffResNet). In addition, the influence of the cross-level loss
net is also included for the comparison.

In this experiment, image denoising is taken as an example.
We use 10 layers (each layer consists of conv., BN, and
ReLU except the first and last layer) for the study on BSD100
(Section V-B) and the corrupted noise is an additive Gaussian
noise with zero mean and standard deviation of 25. A con-
ventional method (BM3D [9]) is used as the formatting layer
in FormResNet (other methods like EPLL [12], WNNM [6]
can also be taken, BM3D is just used for simplicity when
considering the accuracy and efficiency). In this case, the
formatting layer is fixed and only the following layers are
updated during the network training. The VGG-16 net [44]
pre-trained for classification is utilized as the function φ,
and l = 4 (feature map after ReLU2 2). The performance
curve is shown in Fig. 3. We can see that by using residual
learning the network converges faster than without residual
(NoRes) learning. After adding the residual formatting layer,
the network converges in fewer iterations and results in higher
performance. When replacing the MSE loss with the proposed
cross-level loss, the performance boosts further. The added
formatting layer together with the cross-level loss function are
powerful for residual learning. A visual comparison is shown
in Fig. 5, in which FormResNet shows a better visual quality
compared to others, and more details are recovered by the
cross-level loss.

B. Format Layer Configuration

We also evaluate different conventional methods as the
formatting layer. Here we choose the median filter (medfilt2 in
Matlab), NLM [45], and BM3D [9] for example. Experiment
settings are the same as in Fig. 3. The comparison curves
are shown in Fig. 7. For NLM, the patch size is fixed to
7× 7 while the search window radius is set to 3 (NLM3) and
10 (NLM10). From the curves we can observe that different
formatting layers show different performance and all surpass
their conventional-versions (without CNN). Specially, we can
see that after incorporating NLM as the formatting layer,
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Fig. 7. Performance curve for different formatting layer. Formatting methods
Median filter, NLM, and BM3D with their corresponding non-CNN perfor-
mances are shown for comparison.

Conv_1 ReLU_1 Conv_end ReLU_end Network inference

FormResNet

DiffResNet

Fig. 8. Analysis on the feature maps in the hidden layers of DiffResNet
and FormResNet. The first and third rows show the feature maps from
DiffResNet and FormResNet, respectively. The second and fourth rows are
the magnifications of the selected regions in the feature maps.

their performances are improved by a large margin (red and
green curves), approaching the BM3D. In comparison to their
original gap (∼3dB), the “formatted” versions are with much
smaller gap (<0.5dB). Compared to FormResNet-BM3D and
FormResNet-NLM, the FormResNet-Median has a relatively
lower performance. This mainly due to the low performance
of the initial median filter and its “median” scheme (while
NLM and BM3D reference to neighbor similarity), which
influence the following learning process. This study reveals
the effectiveness of the proposed formatted learning approach.
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Fig. 9. Effectiveness of different loss terms. Quantitative performance (left
corner) and qualitative results (right) are shown for comparison.

C. Feature Map Analysis

We next analyze the feature maps extracted from the hidden
layers of the proposed FormResNet and DiffResNet, in the
context of image denoising. For instance, Fig. 8 shows the
feature maps from the first conv. and ReLU layers ( 1) and
the last conv. and ReLU layers ( end). The first two rows are
feature maps from DiffResNet, while the rest two rows are
those from the FormResNet. The first four columns represent
different hidden layers, and the last column is the network
inference. We can see that after the activation layer (ReLU),
the feature maps become sparser and closer to zero. Such
sparse information is easier to learn than the dense nearly-
identity mapping [4]. When comparing the feature maps
between DiffResNet and FormResNet, we can see that the
feature maps of FormResNet focus more on image details
and structures, while those of DiffResNet are corrupted with
noise and arbitrary patterns (see the enlarged regions in the
2nd and 4th rows). The feature maps of FormResNet are
also much sparser than those of DiffResNet, focusing more
on fine details. In addition, the inferences of the networks
also reveal this property – the output of DiffResNet contains
high-frequency random noise while the output of FormResNet
contains structured details.

D. Loss Components

In order to evaluate the effectiveness of the proposed cross-
level loss net, in this study we compare the performance of
different loss terms in the loss net. The FormResNet with k =
1 i.e., DiffResNet is taken as the testbed, after which different
loss terms are concatenated. Three parts of `2 norm (MSE)
loss, `2 norm added feature-loss, and the final cross-level loss
are concatenated respectively. The restoration task of image
denoising is used for the evaluation with added Gaussian noise
(sigma = 25) on Kodak dataset. The comparison result is
shown in Fig. 9. From the quantitative result we can see that
with each added loss term, the performance boosts continually.
We speculate this is due to the local convexity and smoothness
properties of different measurements: `2-only may has many
local minima that prevents a global (or better local) minimum,
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TABLE I
PERFORMANCES FOR DIFFERENT CORRUPTIONS, INCLUDING GAUSSIAN, SALT&PEPPER, SPECKLE, AND POISSON NOISE (UNSEEN IN THE TRAINING

SET) ON THE KODAK DATASET. AVERAGE PSNR/SSIM VALUES ARE REPORTED FOR QUANTITATIVE EVALUATION. DNCNN-B* INDICATES THE
FINETUNED RESULT OF DNCNN-B [31].

Methods Gaussian15 Gaussian25 Gaussian45 Salt&Pepper Speckle Poisson Average

medfilt2 27.73/0.6987 25.40/0.8745 21.73/0.3515 30.08/0.8682 23.98/0.5184 30.60/0.8745 26.59/0.6976
DnCNN-B* 31.93/0.8624 29.81/0.8037 27.64/0.7297 28.57/0.7876 28.81/0.8087 33.59/0.9019 30.06/0.8156
FormResNet-m 32.61/0.8842 30.34/0.8301 27.82/0.7489 43.76/0.9945 31.01/0.8667 38.80/0.9682 34.06/0.8821
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Fig. 10. Performance (PSNR/SSIM) with respect to the network depth
(module number).

while for the combination with `1-gradient and feature-level
constrains perceptually plausible solutions may lead to a much
better minimum. In the qualitative comparison (right side of
Fig. 9), the blur artifact caused by `2 norm is noticeable on the
sky region, and for the characters on the hat our cross-level
loss recovers more details.

E. Network Depth

Here we study the network performance with respect to the
depth of the network. Taking the formatting layer as a 10-layer
convolutional module, the performance of different number of
modules (k) are evaluated as shown in Fig. 10 (experimental
settings are the same as in Section IV-D). We can see that
the network performance boosts when using the formatting
layer and almost converges after the second module, i.e., the
structure shown in Fig. 4. It suggests that the performance not
always increases with the depth when the network achieves its
capacity.

F. Multiple Corruptions in a Single Model

Usually for CNN-based methods, each kind of corruptions
(e.g., noise level or noise type) corresponds to a single
model, which is not flexible for real applications. With the
proposed formatting layer, different kinds of corruptions can
be formatted to an analogous representation and jointly learned
for the corresponding residual maps.

In this study, we consider a general blind denoising problem.
The training data consists of different noise levels and types:
the Gaussian noise with different noise levels, salt&pepper
noise and speckle noise. The recursive version of FormResNet
with k = 2 is trained on the above multi-type data as a
single model for all noise types. We denote this network
as FormResNet-m. Due to the various noise types, median
filter (medfilt2 in Matlab with default parameters) is used as

CleanNoisy medfilt2 FormResNet-mDnCNN-B*
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Fig. 11. Visual results on multiple corruptions. kodim19, Parrot, and Man
are corrupted with Salt&Pepper, Speckle, and Poisson noise, respectively.

a baseline method for comparison since many applications
use median filter as preprocessing. The state-of-the-art CNN-
based denoising method DnCNN [31] is also included for the
comparison. As the DnCNN has a blind Gaussian denoising
version (DnCNN-B), we finetune their model on our multi-
type training data for a fair comparison. Experiment is per-
formed on Kodak dataset for example and the result is shown
in Table I. We can see that by training a single model, image
corrupted with different noise levels/types can be improved to
a large extent. We also test the Poisson noise which is unseen
in the training data. Our FormResNet-m also performs well for
Poisson noise. Example visual results are shown in Fig. 11.

G. Relation to Regularization

Previous non-CNN optimization-based approaches design
their objective functions to promote some empirically observed
priors (e.g., sparsity prior [46], color statistics prior [47]).
Our FormResNet can also be explained as a regularization
operation for image restoration. If we consider the residual
formatting layer as the main body, the following residual
learning part can be considered as a data-driven regularizer
used to identify and fix the unnatural structures. Different
from empirically designed regularization priors, our approach
automatically learns the natural image prior from data, which
is more flexible and likely to handle complicated structures.
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TABLE II
COMPARISON RESULTS ON SET14, BSD100, AND KODAK. WE COMPARE DIFFERENT METHODS ON THE AVERAGE PSNR/SSIM VALUES. THE BEST

PERFORMANCE IS SHOWN IN RED AND THE SECOND BEST IS SHOWN IN BLUE. THE PROPOSED FORMRESNET CONSISTENTLY SURPASSES OTHER
METHODS ON EACH DATASET.

σ BM3D EPLL WNNM MLP DnCNN-S FFDNet RLRestore MWCNN FormResNet FormGAN

Se
t1

4

15 32.31/0.8959 32.03/0.8952 32.62/0.8981 - 32.75/0.9034 32.64/0.9034 31.18/0.8654 33.03/0.9092 32.77/0.9036 32.65/0.9054
25 29.79/0.8471 29.48/0.8436 30.02/0.8506 29.70/0.8455 30.22/0.8584 30.20/0.8598 28.77/0.8123 30.51/0.8669 30.30/0.8599 30.12/0.8592
45 26.55/0.7663 26.33/0.7556 26.76/0.7693 26.60/0.7603 26.91/0.7747 27.06/0.7826 22.87/0.5413 - 27.38/0.7873 26.95/0.7772
75 23.41/0.6766 22.80/0.6443 23.03/0.6622 23.88/0.6829 23.18/0.6637 23.26/0.6697 16.23/0.2639 - 24.89/0.7093 23.35/0.6661

B
SD

10
0 15 30.79/0.8641 30.92/0.8763 31.01/0.8684 - 31.39/0.8831 31.29/0.8826 30.11/0.8368 31.37/0.8819 31.51/0.8848 31.08/0.8712

25 28.14/0.7842 28.29/0.7979 28.31/0.7893 28.46/0.7960 28.71/0.8106 28.67/0.8111 27.44/0.7488 28.80/0.8157 28.98/0.8153 28.46/0.7903
45 25.16/0.6680 25.28/0.6743 25.31/0.6707 25.61/0.6656 25.56/0.6883 25.61/0.6930 22.67/0.5406 - 26.34/0.7114 25.37/0.6541
75 22.56/0.5703 22.20/0.5481 22.23/0.5446 23.25/0.5771 22.29/0.5515 22.31/0.5541 16.98/0.2917 - 24.31/0.6154 22.10/0.5183

K
od

ak

15 32.19/0.8738 32.12/0.8792 32.45/0.8770 - 32.76/0.8883 32.67/0.8889 31.54/0.8562 32.74/0.8868 32.87/0.8890 32.54/0.8749
25 29.69/0.8112 29.57/0.8134 29.90/0.8145 29.84/0.8142 30.19/0.8300 30.18/0.8319 28.67/0.7700 30.36/0.8381 30.42/0.8307 30.02/0.8069
45 26.76/0.7207 26.60/0.7148 26.95/0.7220 26.95/0.7129 27.05/0.7329 27.16/0.7391 23.33/0.5396 - 27.76/0.7457 26.83/0.7009
75 23.95/0.6413 23.36/0.6126 23.70/0.6295 24.51/0.6461 23.57/0.6273 23.65/0.6330 16.84/0.2690 - 25.58/0.6702 23.18/0.5942

Fig. 12. Commonly used test images (Set14). Top-left to bottom-right: C.man,
House, Peppers, Starfish, Monarch, Airplane, Parrot, Lena, Barbara, Boat,
Man, Couple, Montage, Bridge.

V. EXPERIMENTS AND EVALUATIONS

In this section, we show the detail setups for the proposed
network and the performance on several image restoration
applications. The description of training details is presented
at first. Then we compare the proposed method with several
state-of-the-art image restoration methods.

A. Implementation Details

The proposed network is implemented by the PyTorch
framework on a server equipped with an Nvidia Tesla K40
GPU card and an Intel Core i7-4790 CPU.

We use the fully convolutional FormResNet and FormGAN
(training with discriminator) in our experiment (i.e., with and
without the blue block in Fig. 4). The final network depth is set
to 20, which corresponds to the receptive field of the training
patch size. For the aforementioned CNNs, the input layer is a
conv. layer with 64 filters of size 3 × 3 × c (c = 1 for gray-
scale image and c = 3 for color image) followed by a ReLU,
while the following layers except the last layer are of the same
type consist of 64 filters of size 3 × 3 × 64 and followed by
ReLUs. The last layer which is used for reconstruction, is a
single (or 3 for color image) filter of size 3×3×64. In order to
avoid the resolution reduction problem [17], [19] and predict
a dense output with the same size as the input, we pad zero
values to the input before each conv. layer and it turns out to
work well. In addition, we find the batch normalization (BN)
[48] is beneficial to the convergence speed and we simply add
a BN layer between each of the conv. and ReLU layer. The
network is trained by using the stochastic gradient descent
(SGD) [49] optimizer on mini-batch with weight decay set as
10−4 and momentum as 0.9. The mini-batch size is 128 for

denoising and 64 for other applications. For all experiments,
the number of training iterations is under 40 epochs (some
converge in 10 epochs). The learning rate decreases gradually
and is initialized to 0.1. The balancing weights for the cross-
level loss net are set to α = β = 0.3. The weights for the
network are initialized according to the method proposed in
[50], which is shown to be better than random initialization
when using non-linear ReLU as the activation function.

B. Quantitative Performance Evaluation
Image denoising is a fundamental problem for many com-

puter vision problems. Theoretically, synthetic training data
can be infinitely generated. Whereas in this paper, the training
set is generated from a small dataset covers 400 natural
images: the BSD500 [7] (train and test subsets). For testing,
we use three datasets: 14 commonly used benchmark images
(Set14) [9], [45], [6], [51] as shown in Fig. 12, BSD100 (the
val subset of BSD500), and the Kodak Lossless Image Suite3.
In this experiment, only gray-scale images are shown for
example (for color images, we can simply adjust the number
of input channel to 3). Training images are added Gaussian
noise or other types of noises in corresponding experiments.
Data augmentation including flipping and rotation are used on
the training set. For testing, we use the whole image as input
without cropping.

We show both quantitative (Table II) and example qual-
itative (Fig. 13) performance for the proposed method and
present a comparison with other state-of-the-art image de-
noising methods including: BM3D [9], EPLL [12], WNNM
[6], MLP [2], DnCNN [31], FFDNet [32], RLRestore [35],
and MWCNN [34]. The implementation of these methods
are all from the authors’ codes. Metrics of PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural SIMilarity) are
calculated for the evaluation. Following [29], the noisy images
are quantized to range [0-255] for realistic evaluation. From
the result we can see that the proposed approach performs
favorably against the state-of-the-art methods and recovers
more details and structure, especially on high noise levels.
Note that the FFDNet and MWCNN are trained on a much
larger dataset (∼5,500 images) compared to ours (400 images).

3http://r0k.us/graphics/kodak/index.html

http://r0k.us/graphics/kodak/index.html
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(PSNR/SSIM)(25.52/0.6541) (26.28/0.7129)(25.97/0.6972) (25.76/0.6681) (25.92/0.6826) (26.18/0.7067)

(25.35/0.8783)
BM3D

(24.73/0.8454) 
EPLL

(25.24/0.8812)
WNNM

(26.52/0.8965)
MLP

(25.29/0.8873)
DnCNN-S

(28.21/0.9078)
FormResNet Clean

σ 
= 

25
σ 

= 
75

(24.72/0.5814)

(17.34/0.1848)
RLRestore

(26.13/0.7051)

(25.21/0.8925)
FFDNet

Fig. 13. Qualitative results on 156065 and 42049 from BSD100 with Gaussian noise level 25 and 75, respectively. The proposed FormReNet recovers sharp
contours and more details, compared to other methods.

C. Perceptual Performance Evaluation

In order to quantify the visual performance perceptually and
evaluate the adversarial learning, we perform a mean opinion
score (MOS) test. Following [52], we use rational scores from
1 to 5, indicating the image quality from bad to excellent. 22
Raters are asked to assign a score to each observation. We
use the datasets of Set14 and Kodak for the evaluation. Two
noise levels of σ = 45, 75 are included for the evaluation (two
separate sub-test). The methods of BM3D [9], EPLL [12],
WNNM [6], MLP [2], DnCNN [31], FFDNet [32], RLRe-
store [35], FormResNet, and the FormGAN are performed on
each image to produce the observations for the raters (unseen
to the method names) to score. For reference, the ratings on the
ground-truth clean images are also presented (GT). We follow
the rater calibration process as in [52]. The experimental
performance of perceptual evaluation is shown in Table III.
The results show that the proposed FormGAN presents the
best visual performance, with the GT acting as an upper-
bound (→ 5). Compared to the results in Table II, although
the FormGAN not shows a high performance for conventional
metrics (PSNR/SSIM), the perceptual quality evaluated by
MOS validates its effectiveness. Without the adversarial part,
the proposed FormResNet has a lower MOS score than the
FormGAN but still demonstrates a better perceptual quality
than the other methods.

D. Running Time

Table IV compares the computation time of different meth-
ods. Image sizes of 256 × 256 and 512 × 512 are included,
with Gaussian noise level 25. Computation time on GPU is
shown if available. Overall, our running time is comparable
to BM3D on CPU. However, our method on GPU is fast, and
comparable to the state-of-the-art DnCNN and FFDNet.

TABLE III
PERFORMANCE OF THE MOS TEST ON SET14 AND KODAK.

σ = 45 BM3D EPLL WNNM MLP DnCNN-B
Set14 2.56 2.63 2.96 2.81 3.30
Kodak 2.64 2.40 3.16 2.91 3.29

σ = 45 FFDNet RLRestore FormResNet FormGAN GT
Set14 3.33 1.48 3.59 3.63 4.63
Kodak 3.58 1.29 3.67 3.84 4.73

σ = 75 BM3D EPLL WNNM MLP DnCNN-B
Set14 2.50 2.40 2.63 2.70 2.90
Kodak 2.50 2.14 2.68 2.68 2.50

σ = 75 FFDNet RLRestore FormResNet FormGAN GT
Set14 3.10 1.20 3.37 3.47 4.93
Kodak 2.70 1.20 3.40 3.44 4.94

TABLE IV
COMPARISON ON COMPUTATION TIME IN SECONDS. TIME ON CPU/GPU

(IF AVAILABLE) IS REPORTED.

Size BM3D EPLL WNNM MLP DnCNN-B FFDNet RLRestore MWCNN FormResNet

2562 0.54 30.67 146.42 2.37 1.05/0.01 0.83/0.01 0.38/0.37 1.80/0.06 1.11/0.01
5122 2.24 124.54 599.16 6.56 4.60/0.04 3.11/0.02 0.50/0.52 6.41/0.09 4.62/0.05

E. More Applications to Image Restoration

Single Image Super-resolution. Our proposed network can
also be applied to single image super-resolution. We use 91
images from [53] as our training set, which is smaller than the
final training set (291 images) of [20]. Multiple scaling factors
of 2, 3, 4 are trained together for the network. Evaluation is
performed on Set5 [54] and the results are shown in Table V.
The results of state-of-the-art VDSR [20] training on 91/291
images and the basic bicubic interpolation are included for
comparison. From the table we can see that, even training
with much fewer images, our FormResNet performs better
than VDSR training on the same 91 image set. Our method
even performs better than the VDSR training on 291 images.
In Fig. 14, example qualitative performance of our model with
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Fig. 14. Qualitative performance for single image super-resolution. Sampling
scales of ×3 (left) and ×4 (right) are shown for example.

TABLE V
PERFORMANCE COMPARISON ON SINGLE IMAGE SUPER-RESOLUTION ON

SET5. NUMBERS IN THE TABLE ARE PSNR VALUES.

Scale Bicubic VDSR-91 VDSR-291 FormResNet-91

×2 33.66 37.06 37.53 37.55
×3 30.39 33.27 33.66 33.75
×4 28.42 30.95 31.35 31.40

comparison to prior works on super-resolution are presented.
Single Image Rain Removal. We further apply our method

to the problem of rain removal as an illustration to artifact
removal. As there is no large public rain dataset, we use the
12 rain image dataset from [55] for our evaluation. Training is
performed on randomly selected 10 images from the 12 rain
images and the rest 2 images are used for evaluation. Similar
to the denoising application, image patches are extracted with
data augmentation for the training process. For comparison, a
single image rain removal method DSC [56], and DnCNN-B
finetuned on the 10 training images are used here. Results are
shown in Fig. 15, in which the top rows show comparison
on synthetic rainy images, while the bottom rows show per-
formances on real rainy scenes. We can see that most of the
rain artifact on the input image is removed by our method. Far
fewer rain streaks can be observed compared to other methods.

Single Image Blind Deblurring. The proposed method can
also be applied to the blind image deblurring problem [13].
Here we use the challenging GoPro dataset from [57] and
follow the same train/test split. The experimental settings are
kept the same as in the above experiments except the patch size
which is modified to 128 (following prior works) and the batch
size to 32 to cope with the GPU memory. Example results are
shown in Fig. 16, with comparison to Liu et al. [13]. It can be
observed that most motion blurs are removed by our method
with sharper reconstructions.

Other Applications. The powerful capacity of our network
can also benefits other image restoration applications like
natural image inpainting and depth map enhancement, as
shown in Fig. 17 and Fig. 18, respectively. For natural image
inpainting, 30% and 50% of the total number of pixels are
randomly removed from the original image, while for depth
image enhancement both a downsample (with scale=2, 3)
and pixel removal (with 20%, 50%) are performed on the
clean sharp depth map. The training set for inpainting is the
BSD400 [7], while 344 random selected images from [58]
are used to train the depth enhancement application. The

Rain image DnCNN-B* OursDSC
Fig. 15. Comparison result on rain removal for both synthetic data (top two
rows) and real rainy scene (bottom two rows). Fewer rain streaks can be
observed on the result of our method, compared to those of DSC [56] and
DnCNN-B [31].

Blurred image OursLiu et al.
Fig. 16. Comparison result on image deblurring. Fewer motion blur and
artifacts can be observed on the result of the proposed method, compared to
those of Liu et al. [13] (zoom-in for a better comparison).

performance for these additional applications again validates
the effectiveness of the proposed approach.

VI. CONCLUSION

In this paper, we have presented a formatted learning
framework for image restoration. A residual formatting layer
is proposed to format the residual information to structured
details. The proposed cross-level loss net contributes to high
visual quality by leveraging semantic-level similarity. An
additional adversarial learning block is included to further
boost the perceptual quality. Evaluations on multiple public
datasets show that the proposed FormNet (FormResNet and
FormGAN) performs favorably against existing image restora-
tion methods, while being very efficient. FormNet is also able
to handle different corruptions (noise types and noise levels) in
a single model. By applying different operations to the residual
formatting layer, we believe the proposed framework can be
easily extended to more other low-level vision problems.



11

Corrupted Ours Ground truth

-3
0%

-5
0%

Fig. 17. Application on natural image inpainting. Top: 30% pixels are
randomly removed from the image; Bottom: 50% pixels are randomly removed
from the image.
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Fig. 18. Application on depth map enhancement. Top: 20% random pixel
removal and ×2 downsampling are applied to the depth map; Bottom: 50%
random pixel removal and ×3 downsampling are applied to the depth map.
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