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Abstract—Cost computation, cost aggregation, disparity opti-
mization and disparity refinement are the four main steps for
stereo matching. While the first three steps have been widely in-
vestigated, few efforts have been taken on disparity refinement. In
this letter, we propose a color image guided disparity refinement
method to further remove the boundary-inconsistent regions on
disparity map. First, the origins of boundary-inconsistent regions
are analyzed. Then, these regions are detected with the proposed
hybrid-superpixel based strategy. Finally, the detected boundary-
inconsistent regions are refined by a modified weighted median
filtering method. Experimental results on various stereo matching
conditions validate the effectiveness of the proposed method.
Furthermore, depth maps obtained by active depth acquisition
devices like Kinect can also be well refined with our proposed
method.

Index Terms—Disparity refinement, stereo matching, bound-
ary, Kinect.

I. INTRODUCTION

STEREO matching has been one of the most active research
areas in computer vision. Most of the stereo matching

methods can be divided into four steps [1]: cost computation,
cost aggregation, disparity optimization, and disparity refine-
ment. Global and local methods are the two main categories
of approaches for stereo matching. Global methods such as
graph cut [2] and belief propagation [3] focus on the disparity
optimization process, while local methods put great efforts on
the cost aggregation, i.e., seeking robust matching window [4],
[5], [6] or edge-aware weights [7]. In addition, the functions
for cost computation have also drawn increasing attentions
recently [4], [7].

However, few efforts have been taken on disparity refine-
ment. Traditional refinement (or post-processing) method typ-
ically consists of left-right consistency checking, hole-filling,
and a noise-removing filter. In recent years, some new methods
were proposed. Mei et al. proposed a cross-region based
voting method [4] to update the wrong disparities. Rhemann
et al. refined the disparities by a weighted median filter
[7]. Wang et al. adopted a segmentation-based mechanism
[8] to handle the “fattening effects” [1]. Yang used a non-
local aggregation strategy [9] to refine the disparity map.
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Ma et al. employed a constant time weighted median filter
[10] for disparity refinement. Besides the traditional methods,
Hirschmuller proposed a semi-global matching method [11]
and gave a systematic postprocessing strategy [12], in which
a method to distinguish occluded and mismatched pixels
was proposed. Although the disparity map can be somewhat
improved with the methods above, very often there are still
some outliers on the refined disparity map, especially for the
disparities near object boundaries.

In this letter, we propose a new disparity refinement ap-
proach to refine the false disparities near object boundaries.
In our method, color images are involved to guide the w-
hole refinement pipeline. We define the outliers near objec-
t boundary as boundary-inconsistent regions, consisting of
“fattening” regions [1] and “narrowing” regions. Firstly, we
investigate the origins of boundary-inconsistent regions. Then,
the boundary-inconsistent regions are detected with a hybrid-
superpixel based approach proposed in this letter. Finally, a
modified weighted median filtering scheme is proposed to
refine these detected outliers. Experimental results on disparity
maps computed with various stereo matching methods and
depth maps obtained with Kinect demonstrate the effectiveness
of our proposed method.

The letter is organized as follows. Section 2 presents the
proposed method in detail; section 3 gives the experimental
results on various disparity maps and depth maps; and finally,
this letter is concluded in section 4.

II. PROPOSED METHOD

Fig.1 gives the pipeline of the proposed method. The input
is initial disparity map (or depth map) either computed with
stereo matching methods or captured with depth sensors.
Firstly, the initial disparity map is preprocessed to eliminate
dark regions. Secondly, Canny operator is utilized to detect
the edges in disparity map and a hybrid-superpixel method is
proposed to segment the color image, both the above results
are utilized to detect the boundary-inconsistent regions. Final-
ly, a modified weighted median filtering strategy is utilized to
refine the detected outliers. In the following paragraphs, why
and how to detect and refine the boundary-inconsistent regions
are described in detail respectively.

A. Origins of Boundary-inconsistent Regions

After the traditional post-processing, very often there are
still many outliers around the object boundaries in the disparity
map. Such outliers are mainly caused by the mismatching near
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Fig. 1. Pipeline of the proposed disparity refinement method.

Fig. 2. Fattening region (square) and narrowing region (circle) handling. (a)
Color image; (b) disparity map; (c) outlier patches; (d) refined patches.
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Fig. 3. Examples for fattening effect and narrowing effect. Left and right
are the reference image and the target image respectively.

depth discontinuities. We define the regions containing this
kind of outliers as boundary-inconsistent regions.

As far as we observed, the boundary-inconsistent regions
can be divided into two categories: “fattening” region [1]
and “narrowing” region, which are shown in Fig.2 ((b) was
generated by the CostFilter[7] without its median filter post-
processing). The “fattening” region (marked with red square)
is a convex region with outliers spilling out of the object
boundary; while the “narrowing” region (marked with red
circle) is a concave one. “Fattening” effect is caused by the
homogeneous background near depth boundary. As shown in
Fig.3, the background near the right border of the head in
the target image is occluded in the reference image, and the
matching for pixel p1 in the target image is assigned to a wrong
pixel (red one), thus p1 is assigned with a larger disparity than
the ground truth. While the “narrowing” effect is caused by
homogeneous foreground, such as the foreground pixel p2 in
Fig.3, which is wrongly assigned with a smaller disparity than
the ground truth.

B. Boundary-inconsistent Regions Detection

We define inconsistent boundary as the edge on disparity
map which is inconsistent with the border of the corresponding
object in the scene. Thus the inconsistent boundary on a dis-

(a) (b)

Fig. 4. Disparity maps (a) before and (b) after dark region refinement.

parity map can be detected by checking whether its collocated
edge crosses a segment in the color image.

1) Preprocessing: In the initial disparity map, there may be
some regions with abnormal disparities, and these regions tend
to affect the disparity edge detection. We name this kind of
region as dark region (Fig.4(a)). These regions are corrected
beforehand by the proposed preprocessing step. Firstly, we
assign a disparity with low confidence if it is smaller than
a threshold ρ · dM , where ρ and dM represent the penalty
ratio (ρ is set as 1/7 in this letter) and maximum disparity
value respectively; otherwise, the disparity is assigned with
high confidence. Disparity with low confidence is likely to be
an outlier. Furtherly, if the disparity with low confidence is
also much smaller than its neighbors, it’s labeled as a hole,
which is described as follows:

hole(p) =

{
1, d(p) < d(q)/2
0, otherwise

(1)

Where d(p) and d(q) denote the disparities of pixel p and
q respectively. p is q’s nearest neighbor with high confident
disparity. When hole(p) is true, pixel p is with abnormal
disparity, and those abnormal disparities make up the dark
regions in disparity map.

Each detected dark region is corrected by the disparities of
its neighbors. When a dark region is on the image boundary,
the traditional filling method using smaller disparity (back-
ground) tends to cause “dark fill dark” effect. Thus in this
case, we use the larger disparity (foreground) to fill the dark
region as follows:

d(p∗) =

{
min{d(q1), d(q2)}, hole(q1)‖hole(q2)=0
max{d(q1), d(q2)}, hole(q1)‖hole(q2)=1

(2)

where q1 and q2 are the nearest pixels on each side of pixel
p with high confident disparities (if exist), and the refined
disparity is denoted by d(p∗). This process is conducted in
both horizontal and vertical directions. The refined disparity
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Fig. 5. (a) color image, (b) superpixels with SLIC, (c) segments with our
method.

map is shown in Fig.4(b), from which we can see dark regions
(in red circles) on the disparity map have been well corrected.

2) Hybrid Superpixel Segmentation: After the preprocess-
ing, the remaining outliers are mainly near object boundaries.
In order to refine such regions, we use the segment information
from color image together with disparity edge information to
detect them. Traditional color image segmentation is usually
based on mean-shift segmentation [13] or other graph-based
segmentation [14]. However, such algorithms have a high
computational complexity. Since what we care in this case is
the object boundary, a more efficient superpixel based method
of SLIC [15] is used here for the segmentation. The SLIC
algorithm adheres to boundaries, and it is fast and memory
efficient. One example of segment results is shown in Fig.5(b).
However, although most segments adhere to object boundaries,
there are still some regions not well segmented. Thus, based
on SLIC, we propose the following method to further refine
the segmentation.

First the segments not well adhered are detected by the
following voting technique. The pixels in each superpixel are
divided into five bins according to their gray values: 0∼50,
51∼80, 81∼150, 151∼230, 231∼255. If the bin with the
largest number of pixels contains less than 60% of the total
pixels in the superpixel, this superpixel is regarded as “under-
segmented”. Then for the under-segmented superpixel, mean-
shift [13] is utilized to further segment it into several regions.

The segmentation result with the proposed hybrid superpixel
method is shown in Fig.5(c), in which the colorful regions are
the “under-segmented” superpixels further refined with mean-
shift.

In addition, to find out the most suitable superpixel size, we
perform a trial on the Middlebury dataset [16]. The number
of pixels within each superpixel versus the average error
percentage of disparity is shown in Fig.6. We can see that
superpixel size has little influence on the result, and in our
experiments we set the superpixel size at 600 which gives the
minimum error percentage.

We also detect the edges in the disparity map with Canny
edge detector [17]. We label a disparity edge as an inconsis-
tent boundary if its collocated edge is not aligned with the
corresponding segment border (crosses a segment) in color
image.

3) Inconsistent Regions Detection: Boundary-inconsistent
region is the outlier region lies on one side of the inconsistent
boundary. For “fattening” region, it lies on the foreground side
[1], while for “narrowing” region it lies on the background
side. Thus a judgment is demanded to decide on which side
the boundary-inconsistent region lies. Here, we label it by
means of “checking-window”, as shown in Fig.7. At each point
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Fig. 6. Determination on superpixel size.
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Fig. 7. (a) Fattening region detection and (b) narrowing region detection.
d1 and d2 are two areas in the checking-window with different disparities.
(c) and (d): size changing of the adaptive checking-window.

(red point) along the inconsistent boundary, a square checking-
window is formed to detect the boundary-inconsistent region.
The radius r (half of the width) of the checking-window is
set as the minimum distance from the window center to each
border of the segment in four directions:

r = min{dl, dr, dt, db} (3)

where dl, dr, dt, db denote the distances in left, right, top and
bottom directions respectively (denoted by the green lines
in Fig.7(a)). Fig.7 illustrates the complete detection process.
Two correct segments, foreground segment A and background
segment B are circled with blue dotted line in both Fig.7(a)
and Fig.7(b), and the “fattening” effect and “narrowing” effect
occur on region A in Fig.7(a) and Fig.7(b) respectively. The
inconsistent boundary which crosses region B in Fig.7(a) and
A in Fig.7(b) is detected firstly. Then checking-window is
applied on the inconsistent boundary. The checking-window
is divided into two sides by the inconsistent boundary, and
normally the boundary-inconsistent region lies on the side with
smaller area (i.e., d1 in Fig.7(a) or d2 in Fig.7(b)), since in
most cases, outliers region occupies less area of one segment.
If not all the pixels on inconsistent boundary give the same
conclusion, the majority conclusion is set as the final one.
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If the area of d1 equals to that of d2 (Fig.7(c)) exactly, the
size of the checking-window will increase until the areas of
d1 and d2 are different, as shown in Fig.7(d).

C. Boundary-inconsistent Regions Refinement

In our method, we propose a new modified weighted median
(MWM) filter based on binocular guided color images to refine
the boundary-inconsistent region. The proposed MWM filter
is inspired by the constant time weighted median (CTWM)
filter [10]. Compared to the traditional median filter (O(r2),
where r is the filter size), CTWM is much more efficient
(O(1)). In CTWM filter, guided filter [18] weights were used
as the filter weights [10]. However, for disparity refinement,
there are two images from different views of one scene, thus
more information can be utilized. In this letter, we use both of
the two views as the guided color images, like the symmetric
guided filter mentioned in [7]. In our MWM filter, symmetric
guided filter weights [7] are used as the filter weights, so that
the information from both views can be utilized, especially the
edge information. The process is shown in Fig. 8, in which
(a) and (b) are the disparity maps before and after MWM
filtering. First, (a) is divided into several slices, in which each
slice represents a disparity level, and the content is just the
part with that disparity level in (a), as shown in (b). Then for
each disparity slice, MWM filter is applied on the boundary-
inconsistent regions, as shown in (c). Finally, the filtered slices
are combined together to obtain the refined disparity map (d).

III. EXPERIMENTAL RESULTS

In this section, our proposed method is tested on dispari-
ty/depth maps obtained with various methods, and also com-
pared with other state-of-the-art disparity refinement methods.

A. Test on Disparity Maps from Stereo Matching

1) Experimental Settings: – Local Methods. The frame-
work of [7] is utilized for the local methods, which consists
of a truncated AD-gradient cost measure, a guided filter cost
aggregation, and an initial post-processing composed of a left-
right check and a weighted median filter. But the cost measure
and aggregation are replaced by different strategies in two sub-
experiments:

In the first sub-experiment, we fix the cost aggregation and
use five most widely used cost functions for the cost com-
putation: absolute difference (AD), gradient, census, truncated
AD-gradient [7], and AD-census [4];

In the second sub-experiment, we fix the cost function and
choose the following five representative aggregation methods
for the cost aggregation: box filter, guided filter [7], cross
region [5], information permeability [6], and domain transform
aggregation [19].

– Global Methods. We also test our refinement scheme
on global methods. The traditional graph-cut based stereo
matching [2] and stereo matching using belief propagation [3]
are selected in this letter. Related parameters are set as the
same as in these methods.

Test image pairs (Tsukuba, Venus, Teddy, Cones) from the
Middlebury dataset [16] are used in the above experiments.
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Fig. 9. Experimental evaluation on different cost measures and aggregation
methods.
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Fig. 10. Refinement results on Graph cut and Belief propagation.

Metrics of “nonocc”, “all”, and “disc” are calculated for the
four image pairs, representing non-occluded region, all region,
and the region near discontinuities, respectively.

2) Results and Analysis: Fig.9 gives the average error
percentage of local methods over the four Middlebury pairs
before and after applying the proposed disparity refinement
method. The left side and right side represent different cost
measures and different aggregations respectively. It is worth
noting that all of these test cases have been already post-
processed by a weighted median filter with bilateral weights
[7] beforehand. As shown in Fig.9, all the disparity maps are
improved over all of the three metrics by our proposed method.
Experimental results on global methods are shown in Fig.10,
which also validate the effectiveness of our method.

The above experimental results show that even with the
state-of-the-art cost measures, aggregation strategies, or post-
processing methods, there are still some outliers in the dis-
parity map. And these outliers, especially those near dispar-
ity boundaries, are well refined by the proposed refinement
method. An average of 10% improvement can be obtained
over all the test cases, which also indicates the importance of
disparity refinement for stereo matching.

3) Comparison with Other Refinement Methods: We also
compare our proposed method with state-of-the-art disparity
refinement methods: CTWM [10], FattenHandl [8], Vote [4],
jointBF [20] and jointTF [21]. The initial disparity maps
are generated by [7], without its disparity refinement step.
The above methods are used to refine the initial disparity
maps respectively. The visual results and the average error
percentage results over the Middlebury dataset are shown in
Fig. 11 and Table. I respectively. We can see that our proposed
method performs the best among all these methods. Besides,
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TABLE I
COMPUTATIONAL TIME (S) AND AVERAGE ERROR PERCENTAGE (%)

COMPARISON

CTWM FattenHandl Vote jointBF jointTF Proposed
Time 3.45 8.85 4.12 0.14 0.11 4.57

Error Percentage 4.95 5.40 5.11 5.61 5.43 4.52

the computational time for image Tsukuba (384 × 288 with
disparity level 16) is shown in Table. I. The computational
complexity of our method is on the similar level with those
of CTWM, FattenHand1 and Vote, and the MWM filtering
process of our method has a high parallelism, which can be
easily accelerated on GPU-like platform.

B. Test on Depth Maps from Kinect

Kinect is an active 3D scanner composed of a laser device, a
laser feeder, and an RGB camera. Depth map can be acquired

RGB depth map disparity scale refined map

Fig. 12. Experimental results on depth maps obtained with Kinect.

by laser scanning. However, there are many outliers in the
initial depth maps as shown in Fig.12.

As the depth map is too “dark” and hard to see the content,
we first convert the depth to disparity by “disparity=255-
depth” (except depth=0), and scale it by 0.8 for better view.
And since only one color view can be acquired by Kinect, the
guided image in the MWM filter is set to single color image.
Then our proposed method is applied on the disparity scales
derived from the Kinect dataset. The visual results before and
after using our method are shown in Fig.13. We can see that
both the dark regions and boundary-inconsistent regions are
well refined by our method.

IV. CONCLUSION

In this letter, we proposed a new disparity refinement
method. Dark regions were removed with the proposed pre-
processing step, boundary-inconsistent regions were detected
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by utilizing color image segmentation results, and a hybrid su-
perpixel method is also proposed to improve the segmentation.
A modified weighted median filter was proposed to correct the
boundary-inconsistent regions. With our method, the outliers
in disparity maps, especially outliers near object boundaries
were well refined. Experimental results on disparity maps
computed with various stereo matching methods demonstrated
the effectiveness of our method. In addition, the depth maps
captured with Kinect-like depth sensors were also greatly
improved with our method.
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