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Abstract

Recent local stereo matching methods have achieved comparable performance with global methods. However, there

are still some significant outliers existing in the final disparity map. In this paper, we propose a local stereo matching

method that employs a new combined cost and a novel secondarydisparity refinement mechanism. The combined cost

is formulated by a modified color census transform, truncated absolute differences of color and gradients. Symmetric

guided filter is used for the cost aggregation. Different from traditional stereo matching, a novel secondary disparity

refinement is proposed to further remove remaining outliers. Experimental results on Middlebury benchmark show

that our method ranks the5th out of the 153 submitted methods, and it is the best cost-volume filtering-based local

method. Furthermore, experiments on real-world sequencesand depth-based applications also validate the effectiveness

of our proposed method.

Index Terms

Local, stereo matching, matching cost, disparity refinement

I. I NTRODUCTION

Stereo matching is one of the most active research areas in computer vision. It is the process of computing a

disparity map given a pair of stereo images. As mentioned in [1], a variety of approaches have been proposed.

Most stereo algorithms can be categorized into global and local methods. Global methods usually achieve more

accurate disparity map with higher computational complexity, while local methods are more efficient.

In recent years, local methods based on adaptive support-weight [2] have achieved results comparable to that of

global methods using graph cuts [3] or belief propagation [4]. The main idea of these local methods is to measure

the likelihood between center pixel and its neighbor pixelsby means of adaptive support weight. A high weight

indicates they are likely to be on the same object thus with similar disparities. However, this type of methods

involves high computational complexity, and the complexity is related to the window size used for aggregation.

Later, Rhemann et al. proposed a new approach [5] for cost aggregation by smoothing cost volume and its complexity

is independent of the matching window size. Besides, several other cost-volume filtering-based methods have been

developed recently, and achieved good performance. In [6],a hardware-efficient bilateral filter was proposed for

fast aggregation. In [7], the domain transform was importedso that the cost aggregation can be performed by using

1-D filters. A recursive bilateral filter [8] was introduced by Yang for aggregation. De-Maeztu et al. presented an

O(1) method [9] based on a symmetric filter. For matching costcomputation, the most commonly used one is the

absolute difference (AD) to calculate the difference between the intensity of corresponding pixels to measure the

likelihood. After that, cost measures like SAD (Sum of Absolute Difference) and SSD (Sum of Squared Difference)

are also widely used. On the other side, gradient-based measures and non-parametric transforms such as rank and
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census provide a better description of image structure [10]. In [5], Rhemann et al. combined the AD with gradient

and obtained impressive results. Mei et al. presented a new cost measure by combining AD and census to reduce

the errors caused by individual measures [10]. Although theperformance of stereo matching has been improved,

there are still some obvious artifacts in the final results. Much effort is taken on cost aggregation improvement, but

far less attention is paid on disparity refinement, neither the cost measurement.

In this paper, we propose two strategies to further improve the performance of local stereo matching. Firstly, a

new cost measure by merging truncated absolute difference of color, gradients and a modified color census transform

is proposed to improve the initial matching performance. Secondly, after the traditional disparity refinement,

we propose a secondary refinement approach, which is called “Remaining Artifacts Detection and Refinement”

(RADAR) to further refine the results. By means of RADAR, mostof the remaining outliers after traditional

post-processing are corrected, and a remarkable improvement is achieved. For cost aggregation, we employ the

symmetric guided filter proposed in [5] and [9]. Experimental results on Middlebury benchmark [11] demonstrate

the effectiveness of our method, and it is one of the best local stereo matching methods. The performance of our

method is the best among cost-volume filtering-based methods on Middlebury dataset. In addition, our method

works well on real-world sequences, as well as some depth-based applications.

This paper extends our preliminary work [12] by using an adaptive judging-window to facilitate the RADAR

strategy, and performing more experiments to demonstrate the effectiveness of our method. We also provide an in-

depth description of the RADAR mechanism and propose a parallel implementation of our method on CPU. Both

the proposed cost measure and RADAR are extended to a more common framework for stereo matching, instead of

confining to filtering-based method. The remainder of this paper is organized as follows. In section II, the proposed

local stereo matching method with new cost measure and RADARscheme are demonstrated in details. Section III

shows the experimental results on Middlebury dataset, real-world sequences, and some depth-based applications.

Finally, this paper is concluded in section IV.

II. PROPOSEDMETHOD

This section demonstrates our proposed stereo matching method. First, a cost volume is formulated by our proposed

combined cost. Then, a symmetric guided filter is employed for cost-volume filtering. Finally, we propose a RADAR-

aided refinement scheme to further improve the accuracy of disparity map. An overview of the whole pipeline and

the RADAR scheme are shown in Fig. 1(a) and (b).

A. Combined Matching Cost and Initial Refinement

1) Modified color census transform:Motivated by color census transform [13], we propose a modified color

census transform (MCCT) by using a more appropriate method for the census transform (see equation 1). As RGB
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Fig. 1. Overview of the proposed method. (a) The whole pipeline. (b) Workflow of RADAR.

color-space is sensitive to radiometric changes, the imageis firstly converted to Gaussian color model [14] space.

Then the difference between two pixelsp and q is measured by the Euclidean distanceDG(p, q), and the mean

value of all these distances in the window centered atp is denoted byDm(p). The MCCT is formulated as follows,

MCCT (p) = ⊗
q∈N(p)

ξ(Dm(p), DG(p, q)) (1)

ξ(a, b) =







1, b < a

0, otherwise
(2)

where operator⊗ denotes a bit-wise catenation, andN(p) represents the neighbor pixel set ofp. Hamming distance

is used to calculate the difference between the two bit-strings generated by MCCT,

h(p, d) = Hamming(MCCTL(p), MCCTR(p− d)) (3)

whered denotes the disparity of two corresponding pixels in left and right images. At last, a robust exponential

function is used to normalize the cost,

CMCCT (p, d) = 1− exp(−
h(p, d)

λMCCT

) (4)

whereλMCCT is a normalizing parameter of 55. Our new MCCT has a better representation of the image structure

than the traditional color census [13]. And a comparison of MCCT and traditional color census can be found in

our preliminary work [12].
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Cost measure comparison. Top to bottom: repetitive region, dark region, edge, and textureless region. (a) Left images. (b) Close-up of
rectangles in (a). (c) to (g): Results of absolute difference (AD), gradient, census, AD+gradient, and AD+census. (h) Results of the proposed
combined cost.

2) Combined matching cost:In addition to MCCT, we add two other cost components of truncated absolute

differences of color and gradients, which are calculated respectively as follows,

CADc(p, d) = min(13
∑

i=R,G,B

∥

∥IL
i
(p)− IRi (p− d)

∥

∥, λADc),

CGDx(p, d) = min(‖∇xIL(p)−∇xIR(p− d)‖ , λGD)

(5)

whereλADc and λGD are the truncated values [5], and∇x is the derivative inx direction. The gradient iny

direction is also employed, denoted asCGDy. The final combined matching cost is formulated by merging the

above mentioned four cost components,

C(x, y, d) = α · CMCCT + β · CADc + γ · CGDy

+ (1 − α− β − γ) · CGDx

(6)

whereα, β, γ are weights for different cost components, adjusting the four components’ contributions to the total

cost. Fig. 2 gives the comparison between the proposed combined cost and individual costs, as well as some other

combined costs. All of the disparity maps are initial stereomatching results without any post-processing, and the

cost aggregation strategy is the same for all these tests.

3) Symmetric guided filter aggregation:The combined cost for each pixel at each disparity level is stored in a

cost volume. In order to preserve both edges in reference andtarget images, we employ the symmetric guided filter

proposed in [5] and [9] for the cost aggregation. After the cost volume is aggregated by symmetric guided filter,

the “winner-takes-all” strategy is used for disparity selection, i.e., selecting the disparity label with the lowest cost.
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Fig. 3. Support region of pixelp. (a) Cross-region. (b) Traditional square window.

Then the initial disparity map is generated.

4) Initial post-processing:There are still many outliers in the initial disparity map. In order to find the inconsistent

pixels in left and right images, the left-right consistencycheck (LRC) is employed. A pixelp is labeled as outlier

if it violates the following constraint,

|dL(p)− dR(p− dL(p))| < 1 (7)

wheredL, dR are the disparities of the corresponding pixels in left and right images respectively.

Once the outliers are detected, we use a cross-region based voting technique [10] to correct them. The voting

operation is done iteratively to be more robust. The cross region of a pixelp is shown in Fig. 3(a). More details

about the voting method can be found in [10].

After the cross-region voting, we use the nearest reliable pixel in the scan-line to update the remaining outliers

labeled by LRC. A weighted median filter with bilateral filterweights [5] is employed to remove the streak-like

artifacts.

B. Remaining Artifacts Detection and Refinement

Some error regions still exist after the initial post-processing. If these artifacts exist in both left and right images,

they can-not be detected by just employing the LRC. Thus a secondary refinement scheme named “Remaining

Artifacts Detection and Refinement” (RADAR) is proposed in this paper. Fig 1(b) gives a pipeline of RADAR.

1) “Small hole” filling: According to our observation, remaining artifacts are mainly composed of some “small

holes” and outliers around object boundary, as shown in Fig.4. “Small holes” are dark regions with disparities much
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(a) (b) (c) (d) (e)

Fig. 4. “Remaining artifacts” before and after RADAR, the first row represents “small hole”; the2nd to 4
th rows represent convex regions; the

last row represents concave region. (a) Disparity maps before RADAR. (b) Close-up of rectangles in (a). (c) Results after RADAR. (d) Error
maps of (b). (e) Error maps of (c).

smaller than their neighbors. They can be detected by comparing disparities with their neighbors. After detecting

hole-pixel, we use the most appropriate disparity in its neighborhood (both horizontal and vertical) to update it.

Commonly, the hole-pixelp is updated by the pixel with smaller disparity (background pixel), but if the pixel on

the smaller disparity side ofp is also invalid (hole-pixel), it should be updated by the pixel on the other side, as

shown in follows,

d∗p =







max{d
′

p, d
′′

p}, d
′

p · d
′′

p ≤ d2
thres

min{d
′

p, d
′′

p}, d
′

p · d
′′

p > d2
thres

,

dthres = ρ · dmax

(8)

whered
′

p and d
′′

p are the nearest (taking one direction as an example) pixels’disparities larger thandthres, and

dmax is the maximum disparity, whileρ is an empirical penalty of 1/7. The updated disparity is denoted asd∗p.

2) “Inconsistent region” detection:As shown in Fig. 4, the other type of artifacts is composed of outliers

around object boundary. We name these artifacts as “inconsistent regions”, which consist of convex regions (same

as “fattening” region [1]) and concave regions. The inconsistent region is detected by checking whether the edges of

disparity map coincide with the boundaries of objects in thescene. Canny edge detector [15] is used to extract the

7



A

B

A

B

d1

d2

d1
d2

mismatch

edge

convex region

mismatch

edge

concave

region

d1

d2

d1

d2

(a)

(b)

Fig. 5. Inconsistent region detection. (a) Decision on convex and concave regions. (b) Adaptive judging-window.

disparity edges. A mean-shift [16] based color segmentation approach is utilized to detect the objects’ boundaries.

Beforehand, a contrast enhancement operation (histogram equalization on the luminance part of the color image)

is performed, and then the image is converted to CIELab space. With this kind of preprocessing, segmentation

accuracy is improved, especially on dark regions. If an edgein disparity map does not exactly coincide with the

object boundary in the scene, it is labeled as a mismatched edge. Convex regions lie on the foreground side of the

mismatched edge, while concave regions on the background side. Fig. 5 shows the way to decide which side is

the inconsistent region. As is shown in Fig. 5(a), the inconsistent region is labeled by means of a judging-window

(the black grid). The region A circled by blue dotted line represents foreground object, and the rest region B is

background. The red line is the detected mismatched edge. Atevery point (red point) on the mismatched edge a

judging-window is formed, which is divided into two areas: foreground area (larger disparityd1) and background

area (smaller disparityd2). Thus the inconsistent region is labeled on the smaller area side of mismatched edge,

e.g.,d1 side on the left image andd2 side on the right one. The inconsistent (convex or concave) region in Fig. 5(a)

is the region encircled by the blue and red lines. However, when the area ofd1 is equal to the area ofd2 (shown
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in the left image of Fig. 5(b)), the judgment of the inconsistent side would get into a dilemma. Once it occurs, the

judging-window becomes size is increased until the size of the two areas are different (shown in the right image

of Fig. 5(b)).

3) Modified OccWeight:In order to correct the inconsistent regions detected above, we propose a modified

OccWeight (MOW) based on the OccWeight presented in [17]. The OccWeight method corrects a pixel’s disparity

by choosing the most likely one in a fixed square window aroundit. However, a squared window (Fig. 3(b)) is

not robust. Hence we replace the square window with a cross window as shown in Fig. 3(a). The cross window

is consistent with image structure, and provides a much moreaccurate support region. In addition, the disparity

inheritance [17] is also adopted. In a cross window of pixelp, the weight of its neighboring pixel (q) is calculated

as follows,

w(p, q) =







exp(−
∆cpq
φc
−

∆spq
φs

), if q /∈ RI

0 , otherwise
(9)

where∆cpq and∆spq are the color distance and spatial distance betweenp andq, φc andφs are parameters used

to normalize the color and spatial distances, respectively[17]. RI is the set of inconsistent regions. The updated

disparity is calculated as,

d∗(p) = argmax
d∈D

(
∑

q∈AWp

w(p, q) ×m(q, d)),

m(q, d) =







1, if d(q) = d

0, otherwise

(10)

whereD is the set of disparity candidates, andAWp is the set of pixels in the cross window ofp. By employing

the MOW, outliers at inconsistent regions are corrected (last image in Fig. 1(b)). Finally, we smooth the disparity

map with a median filter to remove the remaining noises. The pseudo code of the RADAR algorithm is given in

Algorithm 1.
In order to evaluate the effectiveness of our proposed RADAR-aided refinement pipeline, we test it on the

Middlebury dataset (Tsukuba, Venus, Teddy, andCones) [11], and use the evaluation measures of “Nonocc”, “All”,

“Disc”, representing the non-occluded regions, all regions, and regions near discontinuities, respectively. For each

measure, the average value of the four images in the dataset is calculated. Fig. 6(a) demonstrates the effectiveness of

each step in the proposed refinement pipeline. “CRV” and “WMF” represent the cross-region voting and weighted

median filter respectively. As shown, the error decreases after each step of our pipeline. In addition, we compare

the RADAR-aided disparity refinement with the fattening region refinement proposed in [18] (denoted as MDC)

and the referenced method of OccWeight [17], as shown in Fig.6(b). For MDC, we use the fattening detection

method in [18], while for OccWeight, the region-detection method in this paper is employed. Furthermore, the

RADAR-only (RADAR-o) item without the initial post-processing is also evaluated. All of these methods are based
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Algorithm 1 Remaining Artifacts Detection and Refinement (RADAR)
Input: disparity map D (disparity ofp is dp) and color image I
Output: refined disparity mapD∗

1: —————————“small hole” filling—————————–
2: dthres ← ρ · dmax

3: d
′

p, d
′′

p ∈ {dispairty of the nearest pixels top }
4: if d

′

p · d
′′

p > d2thres then
5: d∗p ← min{d

′

p, d
′′

p}
6: else
7: d∗p ← max{d

′

p, d
′′

p}
8: end if
9: —————inconsistent region detection (See Fig. 5)————–

10: E∗ ← Canny edge detection on disparity map
11: I∗ ← contrast enhancement on color imageI
12: S∗ ←segmentation onI∗ in CIELab space
13: for each edgee in E∗, each segments in S∗ do
14: if e throughs then
15: mismatch edge← e
16: end if
17: end for
18: for each point on mismatch edgedo
19: if aread1 < aread2 then
20: RI ← aread1
21: else if aread1 > aread2 then
22: RI ← aread2
23: else
24: while aread1 == aread2 do
25: increase the size of judging-window
26: end while
27: goto 19
28: end if
29: end for
30: ———————————–MOW————————————
31: for each error pixelp in RI do
32: AWp ← adaptive window ofp
33: for q ∈ AWp do
34: w(p, q)← weight of p, q
35: end for
36: d∗(p)← argmax

d∈D

(
∑

q∈AWp

w(p, q) ×m(q, d))

37: end for
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Fig. 6. (a) Improvements of each step in the refinement pipeline. (b) Comparison with other approaches. (c) Comparisons on BlockMatch. (d)
Comparisons on DTAggr-P.

on the same initial disparity map, i.e., based on our proposed combined cost and aggregation. As shown in Fig.6(b),

the refinement pipeline proposed in this paper performs the best among all these methods. In order to validate the

universality of the RADAR scheme, comparisons under the platform of other local methods are also performed as

shown in Fig. 6(c) and (d). BlockMatch and DTAggr-P [7] are chosen for the comparison, their disparity refinement

steps are replaced by the methods to be compared. Our RADAR scheme still obtains the best performance under

these local methods.

III. E XPERIMENTAL RESULTS

This section shows an experimental evaluation of our proposed method. Here, the evaluation is performed over two

test sets. One is the Middlebury dataset [11], while the other is some typical real-world sequences. Applications

in 3D reconstruction and virtual view synthesis are also shown. The parameters used in the experiment are chosen

empirically and kept constant as{α, β, γ} = {0.011, 0.15, 0.1}. These parameters are obtained based on 35 images

with ground truth disparity maps on Middlebury datasets according to an optimization process aiming at obtaining
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TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD COMPARED WITH OTHER LOCAL METHODS ONM IDDLEBURY.

Algorithm Rank Tsukuba Venus Teddy Cones Rank*nonocc all disc nonocc all disc nonocc all disc nonocc all disc
ADCensus[10] 2 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95 28

Proposed 5 1.17 1.48 6.35 0.14 0.29 1.83 5.39 10.6 14.7 2.01 7.37 5.88 13
HEBF [6] 31 1.10 1.38 5.74 0.22 0.33 2.41 6.54 11.8 15.2 2.78 9.28 8.10 24

DTAggr-P [7] 39 1.75 2.10 7.09 0.24 0.45 2.59 5.70 11.5 13.9 2.49 7.82 7.30 33
CostFilter [5] 40 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 19
P-LinearS [9] 53 1.10 1.67 5.92 0.53 0.89 5.71 6.69 12.0 15.9 2.60 8.44 6.71 53

RecursiveBF [8] 68 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 36

the minimum average error percentage.

A. Middlebury Dataset

The experimental results on four test images (Tsukuba, Venus, Teddy, andCones) from Middlebury online benchmark

[11] of our proposed method are shown in Fig. 7(a). Our proposed method obtains competitive performance with

the state-of-the-art methods, and ranks the5th out of 153 methods by the time we submit. To the best of our

knowledge, our method is the top one of cost-volume filtering-based local methods.

Our method is also compared with some other filtering-based local methods and “ADCensus” [10] (the top local

method) on Middlebury. The comparison results are listed inTable 1, and error percentages in different regions for

the four images are presented. Error threshold is set to the default 1.0. Meanwhile, sub-pixel threshold 0.75 is also

chosen, and the rank on it can be seen in the last column (Rank*) of Table I.

From Table I, when error threshold is 1.0, the method proposed in this paper is the best cost-volume filtering-

based method, and the second best local method (poor than “ADCensus” [10]). However, when errors are evaluated

at sub-pixel level (0.75), our method performs the best in the selected methods. Sub-pixel evaluation means the

disparity can be a floating number, instead of being limited to integer, and it is useful in practical applications. But

its worth noting that our method has no regard of sub-pixel, which means all of the disparities are estimated at

integer level. In sub-pixel level, the performance of our method only has a slight decline (rank from the5th to the

13th), which proves the robustness of our proposed method. Experimental results on other images in Middlebury

dataset are shown in Fig. 7(b).

B. Real-World Dataset

In this experiment, we choose four real-world sequences as the test set: theBookArrival sequence from HHI 3D

video database, theBalloonssequence from FTV,CafeandNewspapersequences obtained from GIST. For each test

sequence, we randomly extract a frame with its corresponding view as test image pair. Besides, some competitive
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(a)

(b)

Fig. 7. Experimental results on Middlebury dataset. (a) Top-to-bottom:Tsukuba, Venus, Teddy, Cones, respectively; left-to-right: color images,
ground truth, results of our method, error maps with threshold equals 1.0. (b) Other results. Left-to-right: color images, ground truth, and results
of our method.
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Fig. 8. Experimental results of our method compared with competitive algorithms on real-world sequences. (a) Left frames. From (b) to (e):
Results of RecursiveBF, CostFilter, DTAggr-P, and HEBF. (f) Results of proposed method.

filtering-based methods mentioned above are selected for the comparison, which are RecursiveBF [8], CostFilter

[5], DTAggr-P [7], and HEBF [6]. The parameter settings of these methods are the same as recommended in these

papers. The visual results are shown in Fig. 8.

From the visual results we can see that, our method has the best edge-preserving performance, such as the lion

in BookArrivalsequence and objects inBalloonssequence. In addition, our disparity results perform well on image

borders, e.g., the coat on the left border ofBookArrival and Newspaper sequences, which is important in practical

applications, such as virtual view synthesis and 3D reconstruction. The experimental results on real-word sequences

again prove the effectiveness of our proposed method.

C. 3D Reconstruction and View Synthesis

In order to verify the effectiveness of our proposed method,the three dimensional reconstruction and virtual view

synthesis results are generated based on the disparity map calculated by our method. In Fig.9(a), the 3D views of

Tsukubaand Teddyreconstructed by the disparity maps generated by our method, CostFilter [5] and ADCensus

[10] are shown. For the red rectangle regions, our method performs better than the other two methods.

Another application is the depth-based virtual view synthesis. Here, the common used reference software VSRS

from MPEG is utilized to synthesize virtual view at the middle of the two reference views. SequencesBalloonsand

14



ADCensus CostFilter Proposed GroundTruth

BlockMatch CostFilter DTAggr-P Proposed

(a)

(b)

Fig. 9. (a) 3D reconstruction ofTsukubaandTeddy. (b) Virtual view synthesis onBalloonsandBookArrival.

BookArrival are chosen for the test. Results based on the disparity maps generated by Block Matching, CostFilter

[5], DTAggr-P [7], and our proposed method are shown in Fig. 9(b). As shown, there are many artifacts in the

virtual view synthesized by BlockMatch, CostFilter, and DTAggr-P, while there is no artifact in the synthesized

view by our method, which validate the effectiveness of our proposed stereo matching method.
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D. Computational Complexity

The computational complexity of our proposed stereo matching method is determined by the following four steps:

1) combined cost computation, 2) guided filter aggregation,3) initial refinement, and 4) the RADAR. LetN be the

number of image pixels, andD be the number of disparity levels. The complexity of the combined cost computation

is O(ND), the complexity of the cost aggregation isO(1) [9] given the integral image and the complexity of

computing integral image isO(N). The complexity of initial disparity refinement isO(N). In RADAR, “small

hole” filling and the MOW can be done inO(N) andO(ε), whereε is the number of error pixels. For Canny edge

detector, the complexity isO(NlogN). The color segmentation in RADAR can be implemented inO(NlogN) or

evenO(N) with the help of KD-tree or integral image. Therefore, the overall complexity of the proposed method

is O(N + ND + NlogN + ε). As D and ε are small constants for practical applications, the complexity can be

approximately equal toO(NlogN). In addition, most parts of the method can be implemented in parallel. Thus

the proposed method is applicable for high-resolution images or video application.

For Middlebury dataset, the dimensions of imagesTsukuba, Venus, Teddy, andConesare384× 288, 434× 383,

450× 375, and450× 375 with the disparity range of 15, 19, 59, and 59, respectively.Our algorithm is applied on

each pair of stereo images to calculate the disparity results. In each case, the computational time is recorded. Our

experiment is implemented on a PC equipped with a 3.40 GHz Intel core i7 CPU and a 4GB memory. In our proposed

method, the mainly time-consuming parts are the aggregation step and the disparity refinement step, accounting

for 60.61% and 24.49% of the total time respectively. However, both of them as well as the cost computation can

be performed in parallel on the GPU. With the help of OpenMP, parts of our algorithm are parallelized on the

CPU, the acceleration ratio is about3.2×. The computational time forTsukuba, Venus, Teddy, andConesare 3.11s,

5.70s, 12.34s, and 12.48s, respectively. As the algorithm has not been fully optimized, and it is only implemented

on CPU instead of the GPU, it is expected be accelerated greatly in our future work.

IV. CONCLUSIONS

In this paper, we propose a secondary refinement scheme and a combined cost to improve the performance of

local stereo matching. The secondary refinement scheme, namely RADAR, mainly focuses on handling remaining

artifacts after traditional disparity refinement. In the combined cost, a modified color census transform (MCCT) is

proposed combined with truncated AD and gradients. Experimental results show that our proposed method achieves

the state-of-the-art performance and is one of the best local stereo matching methods on Middlebury benchmark. In

addition, experimental results on four representative real-world sequences and some depth-based applications show

the effectiveness of our method as well. A parallel implementation on CPU also demonstrates the parallelizability

of our method.
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