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Abstract

Recent local stereo matching methods have achieved cobipgrarformance with global methods. However, there
are still some significant outliers existing in the final disty map. In this paper, we propose a local stereo matching
method that employs a new combined cost and a novel secodiquarity refinement mechanism. The combined cost
is formulated by a modified color census transform, trurdtatesolute differences of color and gradients. Symmetric
guided filter is used for the cost aggregation. Differentrfrivaditional stereo matching, a novel secondary disparity
refinement is proposed to further remove remaining outliEsperimental results on Middlebury benchmark show
that our method ranks th&" out of the 153 submitted methods, and it is the best costrvelfiltering-based local
method. Furthermore, experiments on real-world sequesrméslepth-based applications also validate the effeds&en
of our proposed method.

Index Terms

Local, stereo matching, matching cost, disparity refinedmen

|I. INTRODUCTION

Stereo matching is one of the most active research areasniputer vision. It is the process of computing a
disparity map given a pair of stereo images. As mentionedl]nd variety of approaches have been proposed.
Most stereo algorithms can be categorized into global ardllmethods. Global methods usually achieve more
accurate disparity map with higher computational compyexihile local methods are more efficient.

In recent years, local methods based on adaptive suppaghifj@] have achieved results comparable to that of
global methods using graph cuts [3] or belief propagatinTéhe main idea of these local methods is to measure
the likelihood between center pixel and its neighbor pixglsmeans of adaptive support weight. A high weight
indicates they are likely to be on the same object thus withilar disparities. However, this type of methods
involves high computational complexity, and the complexd related to the window size used for aggregation.
Later, Rhemann et al. proposed a new approach [5] for coseggtion by smoothing cost volume and its complexity
is independent of the matching window size. Besides, ske#nar cost-volume filtering-based methods have been
developed recently, and achieved good performance. Ina[@lardware-efficient bilateral filter was proposed for
fast aggregation. In [7], the domain transform was imposgedhat the cost aggregation can be performed by using
1-D filters. A recursive bilateral filter [8] was introduceg ang for aggregation. De-Maeztu et al. presented an
O(1) method [9] based on a symmetric filter. For matching coshputation, the most commonly used one is the
absolute difference (AD) to calculate the difference bemvéhe intensity of corresponding pixels to measure the
likelihood. After that, cost measures like SAD (Sum of AhgslDifference) and SSD (Sum of Squared Difference)

are also widely used. On the other side, gradient-baseduresaand non-parametric transforms such as rank and



census provide a better description of image structure [h05], Rhemann et al. combined the AD with gradient
and obtained impressive results. Mei et al. presented a stvneeasure by combining AD and census to reduce
the errors caused by individual measures [10]. Althoughpdormance of stereo matching has been improved,
there are still some obvious artifacts in the final resultsicMeffort is taken on cost aggregation improvement, but
far less attention is paid on disparity refinement, neitherdost measurement.

In this paper, we propose two strategies to further imprineperformance of local stereo matching. Firstly, a
new cost measure by merging truncated absolute differéo@ar, gradients and a modified color census transform
is proposed to improve the initial matching performancecdsely, after the traditional disparity refinement,
we propose a secondary refinement approach, which is calledhéining Artifacts Detection and Refinement”
(RADAR) to further refine the results. By means of RADAR, madtthe remaining outliers after traditional
post-processing are corrected, and a remarkable improveimechieved. For cost aggregation, we employ the
symmetric guided filter proposed in [5] and [9]. Experimémésults on Middlebury benchmark [11] demonstrate
the effectiveness of our method, and it is one of the best kteaeo matching methods. The performance of our
method is the best among cost-volume filtering-based metlomdMiddlebury dataset. In addition, our method
works well on real-world sequences, as well as some depthebapplications.

This paper extends our preliminary work [12] by using an agtegudging-window to facilitate the RADAR
strategy, and performing more experiments to demonsthateffectiveness of our method. We also provide an in-
depth description of the RADAR mechanism and propose a lpamaiplementation of our method on CPU. Both
the proposed cost measure and RADAR are extended to a moreaoframework for stereo matching, instead of
confining to filtering-based method. The remainder of thigguas organized as follows. In section Il, the proposed
local stereo matching method with new cost measure and RAB&iRme are demonstrated in details. Section Il
shows the experimental results on Middlebury dataset;wedd sequences, and some depth-based applications.

Finally, this paper is concluded in section IV.

Il. PROPOSEDMETHOD

This section demonstrates our proposed stereo matchirgprhefirst, a cost volume is formulated by our proposed
combined cost. Then, a symmetric guided filter is employeddst-volume filtering. Finally, we propose a RADAR-
aided refinement scheme to further improve the accuracyspiadity map. An overview of the whole pipeline and

the RADAR scheme are shown in Fig. 1(a) and (b).

A. Combined Matching Cost and Initial Refinement

1) Modified color census transformylotivated by color census transform [13], we propose a medlifiolor

census transform (MCCT) by using a more appropriate metoothe census transform (see equation 1). As RGB
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Fig. 1. Overview of the proposed method. (a) The whole piel(b) Workflow of RADAR.

color-space is sensitive to radiometric changes, the inmdjestly converted to Gaussian color model [14] space.
Then the difference between two pixglsand ¢ is measured by the Euclidean distanPe (p, ¢), and the mean

value of all these distances in the window centereg istdenoted byD,,,(p). The MCCT is formulated as follows,

MCCT(p)= ® &(Dm(p),Da(p.q)) 1)
gEN(p)
fan={ " " @
0, otherwise

where operato® denotes a bit-wise catenation, aiNdp) represents the neighbor pixel setpofHamming distance

is used to calculate the difference between the two bitgérigenerated by MCCT,
h(p,d) = Hamming(MCCTy(p), MCCTg(p — d)) 3)

whered denotes the disparity of two corresponding pixels in leftl aight images. At last, a robust exponential
function is used to normalize the cost,

h(p,d)
Avcer

(4)

Cuceor(p,d) =1 — exp(—

where cor is a normalizing parameter of 55. Our new MCCT has a bettaessmtation of the image structure
than the traditional color census [13]. And a comparison @®T and traditional color census can be found in

our preliminary work [12].
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Fig. 2. Cost measure comparison. Top to bottom: repetitaggon, dark region, edge, and textureless region. (a) bediges. (b) Close-up of
rectangles in (a). (c) to (g): Results of absolute diffeee8D), gradient, census, AD+gradient, and AD+census. @uRs of the proposed
combined cost.

(b)

2) Combined matching costn addition to MCCT, we add two other cost components of tated absolute
differences of color and gradients, which are calculatepeetively as follows,

CADc(p7 d) = mln(% ':RZG B IlL(p) - IzR(p - d)“a >\ADC)9 (5)

Capa(p, d) = min([[ValL(p) = Velr(p — d)l|, Aep)

where A4p. and A\gp are the truncated values [5], and, is the derivative inz direction. The gradient iny
direction is also employed, denoted &@g;p,. The final combined matching cost is formulated by mergirg th

above mentioned four cost components,

C(z,y,d) =a-Cyuccer +B8-Cape+7-Capy
+(I-a-B~-7) Copa

(6)

wherea, 3,y are weights for different cost components, adjusting the fmmponents’ contributions to the total
cost. Fig. 2 gives the comparison between the proposed oemblmiost and individual costs, as well as some other
combined costs. All of the disparity maps are initial steneatching results without any post-processing, and the
cost aggregation strategy is the same for all these tests.

3) Symmetric guided filter aggregatiohe combined cost for each pixel at each disparity levelasest in a
cost volume. In order to preserve both edges in referenceaagdt images, we employ the symmetric guided filter
proposed in [5] and [9] for the cost aggregation. After thetomlume is aggregated by symmetric guided filter,

the “winner-takes-all” strategy is used for disparity s#ien, i.e., selecting the disparity label with the lowessic
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Fig. 3. Support region of pixeb. (a) Cross-region. (b) Traditional square window.

Then the initial disparity map is generated.
4) Initial post-processingThere are still many outliers in the initial disparity map.drder to find the inconsistent
pixels in left and right images, the left-right consisteratyeck (LRC) is employed. A pixel is labeled as outlier

if it violates the following constraint,
ldL(p) — dr(p —dr(p))| <1 (7)

wheredy, dgr are the disparities of the corresponding pixels in left agitrimages respectively.

Once the outliers are detected, we use a cross-region basied vechnique [10] to correct them. The voting
operation is done iteratively to be more robust. The crog®reof a pixelp is shown in Fig. 3(a). More details
about the voting method can be found in [10].

After the cross-region voting, we use the nearest reliablel pn the scan-line to update the remaining outliers
labeled by LRC. A weighted median filter with bilateral filtereights [5] is employed to remove the streak-like

artifacts.

B. Remaining Artifacts Detection and Refinement

Some error regions still exist after the initial post-presiag. If these artifacts exist in both left and right images
they can-not be detected by just employing the LRC. Thus amgkry refinement scheme named “Remaining
Artifacts Detection and Refinement” (RADAR) is proposed liistpaper. Fig 1(b) gives a pipeline of RADAR.

1) “Small hole” filling: According to our observation, remaining artifacts are nyadtomposed of some “small

holes” and outliers around object boundary, as shown in&igSmall holes” are dark regions with disparities much
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Fig. 4. “Remaining artifacts” before and after RADAR, thesfirow represents “small hole”; th#*? to 4" rows represent convex regions; the
last row represents concave region. (a) Disparity mapsr@dRADAR. (b) Close-up of rectangles in (a). (c) ResultsraRADAR. (d) Error
maps of (b). (e) Error maps of (c).

smaller than their neighbors. They can be detected by campdisparities with their neighbors. After detecting
hole-pixel, we use the most appropriate disparity in itgghborhood (both horizontal and vertical) to update it.
Commonly, the hole-pixep is updated by the pixel with smaller disparity (backgroutixep, but if the pixel on
the smaller disparity side gf is also invalid (hole-pixel), it should be updated by thegbign the other side, as

shown in follows,

dr = max{d;,, d;}’ d;? ’ d; < dt2h1'zs
min{d,, d,},  d,-d, >d? (8)

dthres =pP- dmax

whered;, and d;,' are the nearest (taking one direction as an example) pig@garities larger tham,y...s, and
dmax IS the maximum disparity, while is an empirical penalty of 1/7. The updated disparity is ded@sd,,.

2) “Inconsistent region” detection:As shown in Fig. 4, the other type of artifacts is composed watli@rs
around object boundary. We name these artifacts as “ins@mgiregions”, which consist of convex regions (same
as “fattening” region [1]) and concave regions. The incstesit region is detected by checking whether the edges of

disparity map coincide with the boundaries of objects ingbene. Canny edge detector [15] is used to extract the
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Fig. 5. Inconsistent region detection. (a) Decision on eanand concave regions. (b) Adaptive judging-window.

disparity edges. A mean-shift [16] based color segmentatjgproach is utilized to detect the objects’ boundaries.
Beforehand, a contrast enhancement operation (histoggamalization on the luminance part of the color image)
is performed, and then the image is converted to CIELab spadh this kind of preprocessing, segmentation
accuracy is improved, especially on dark regions. If an ddggisparity map does not exactly coincide with the
object boundary in the scene, it is labeled as a mismatchgel. €bnvex regions lie on the foreground side of the
mismatched edge, while concave regions on the backgrouled Big. 5 shows the way to decide which side is
the inconsistent region. As is shown in Fig. 5(a), the in¢sirst region is labeled by means of a judging-window
(the black grid). The region A circled by blue dotted line negents foreground object, and the rest region B is
background. The red line is the detected mismatched edgevély point (red point) on the mismatched edge a
judging-window is formed, which is divided into two areasrdground area (larger disparitly) and background
area (smaller disparityiz). Thus the inconsistent region is labeled on the smallea aige of mismatched edge,
e.g.,d; side on the left image and, side on the right one. The inconsistent (convex or concagpn in Fig. 5(a)

is the region encircled by the blue and red lines. Howeveemthe area ofl; is equal to the area af, (shown



in the left image of Fig. 5(b)), the judgment of the inconsigtside would get into a dilemma. Once it occurs, the
judging-window becomes size is increased until the sizeéhefttvo areas are different (shown in the right image
of Fig. 5(b)).

3) Modified OccWeight:In order to correct the inconsistent regions detected gbeeepropose a modified
OccWeight (MOW) based on the OccWeight presented in [17& DlecWeight method corrects a pixel’s disparity
by choosing the most likely one in a fixed square window arondiowever, a squared window (Fig. 3(b)) is
not robust. Hence we replace the square window with a crosdomi as shown in Fig. 3(a). The cross window
is consistent with image structure, and provides a much raooerate support region. In addition, the disparity
inheritance [17] is also adopted. In a cross window of ppxethe weight of its neighboring pixel] is calculated

as follows,

Acpg _ Aspg .
w(p,q)_{ exp(~ be B ) if a ¢ Ri o

, otherwise
whereAc,, and As,, are the color distance and spatial distance betweandgq, ¢. and ¢, are parameters used
to normalize the color and spatial distances, respectility. R; is the set of inconsistent regions. The updated

disparity is calculated as,

d*(p) = argmax( >, w(p,q) x m(g,d)),
deD  qEAW,

. 10)
1, if diq)=d (
m(q,d) =
0, otherwise

where D is the set of disparity candidates, addlV, is the set of pixels in the cross window pf By employing
the MOW, outliers at inconsistent regions are correctest (lmage in Fig. 1(b)). Finally, we smooth the disparity
map with a median filter to remove the remaining noises. Theigs code of the RADAR algorithm is given in

Algorithm 1.
In order to evaluate the effectiveness of our proposed RABR#Rd refinement pipeline, we test it on the

Middlebury datasetTsukubaVenus Teddy andCone$ [11], and use the evaluation measures of “Nonocc”, “All”,
“Disc”, representing the non-occluded regions, all regicemd regions near discontinuities, respectively. Foh eac
measure, the average value of the four images in the datasaiculated. Fig. 6(a) demonstrates the effectiveness of
each step in the proposed refinement pipeline. “CRV” and “Wképresent the cross-region voting and weighted
median filter respectively. As shown, the error decreases afch step of our pipeline. In addition, we compare
the RADAR-aided disparity refinement with the fatteningioegrefinement proposed in [18] (denoted as MDC)
and the referenced method of OccWeight [17], as shown in &g). For MDC, we use the fattening detection
method in [18], while for OccWeight, the region-detectiomthod in this paper is employed. Furthermore, the
RADAR-only (RADAR-0) item without the initial post-procemg is also evaluated. All of these methods are based



Algorithm 1 Remaining Artifacts Detection and Refinement (RADAR)

Input: disparity map D (disparity op is d,,) and color image |
Output: refined disparity map*

1: “small hole” filling

2: d;‘,hre/s/ P dmax

3 d,, (,ip € {dispairty of the nearest pixels {0}

4 ifd,-d, > dfhmls then

5: dy, + min{d,,, d,

6: else

7: dyy max{d;, d;}

8. end if

9: inconsistent region detection (See Fig. 5)
10: E* <~ Canny edge detection on disparity map

11: I* + contrast enhancement on color imafe

12: S* <—segmentation od* in CIELab space

13: for each edge in E*, each segment in S* do

14: if e throughs then

15: mismatch edge— e

16: end if

17: end for

18: for each point on mismatch edg®

19: if aread; < aread- then

20: R; + aread;

21: else if aread; > aread- then

22: R; < aread,

23: else

24: while aread; == aread, do

25: increase the size of judging-window

26: end while

27: goto 19

28: end if

29: end for

30: MOW-

31: for each error pixep in Ry do

32 AW, < adaptive window ofp

33 for ¢ € AW, do

34: w(p, q) + weight ofp, ¢

35: end for

36 d*(p) < argmax( >, w(p,q) x m(q,d))
deD  geAW,

37: end for

10
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Fig. 6. (a) Improvements of each step in the refinement pipelfb) Comparison with other approaches. (c) ComparisarBlackMatch. (d)
Comparisons on DTAggr-P.

on the same initial disparity map, i.e., based on our pragppesenbined cost and aggregation. As shown in Fig.6(b),
the refinement pipeline proposed in this paper performs &st #mong all these methods. In order to validate the
universality of the RADAR scheme, comparisons under théfgia of other local methods are also performed as
shown in Fig. 6(c) and (d). BlockMatch and DTAggr-P [7] ar@sén for the comparison, their disparity refinement

steps are replaced by the methods to be compared. Our RADA&Tee still obtains the best performance under
these local methods.

I11. EXPERIMENTAL RESULTS

This section shows an experimental evaluation of our pregposethod. Here, the evaluation is performed over two
test sets. One is the Middlebury dataset [11], while the rothesome typical real-world sequences. Applications
in 3D reconstruction and virtual view synthesis are alsonshdrhe parameters used in the experiment are chosen
empirically and kept constant d&, 3,7} = {0.011,0.15,0.1}. These parameters are obtained based on 35 images

with ground truth disparity maps on Middlebury datasetsoating to an optimization process aiming at obtaining

11



TABLE |
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD COMPARED WIH OTHER LOCAL METHODS ONMIDDLEBURY.

: Tsukuba Venus Teddy Cones %
Algorithm Rank nonocc all disc| nonocc all disc| nonocc all disc| nonocc all disc Rank
ADCensus[10] 2 1.07 148 5731 0.09 025 1.15 410 6.22 10.9] 242 7.25 6.95 28

Proposed 5 1.17 148 6.35 0.14 0.29 1.83| 539 10.6 147/ 2.01 7.37 5.88] 13

HEBF [6] 31 | 1.10 1.38 5.74/ 0.22 0.33 241 654 11.8 15.2| 278 9.28 8.10 24
DTAggr-P [7] 39 | 1.75 2.10 7.09] 0.24 045 259 570 115 139/ 249 7.82 7.30, 33
CostFilter [5] 40 | 151 185 7.61 0.20 0.39 242 6.16 11.8 16.0/ 2.71 8.24 7.66] 19
P-LinearS [9] 53 | 1.10 1.67 592/ 053 0.89 571 6.69 120 159 260 8.44 6.71 53
RecursiveBF [8]| 68 | 1.85 251 7.45H 0.35 0.88 3.01| 6.28 12.1 14.3/ 280 8.91 7.79] 36

the minimum average error percentage.

A. Middlebury Dataset

The experimental results on four test imagésukubaVenus Teddy andCone$ from Middlebury online benchmark
[11] of our proposed method are shown in Fig. 7(a). Our pregasethod obtains competitive performance with
the state-of-the-art methods, and ranks e out of 153 methods by the time we submit. To the best of our
knowledge, our method is the top one of cost-volume filtetiaged local methods.

Our method is also compared with some other filtering-baseal Imethods and “ADCensus” [10] (the top local
method) on Middlebury. The comparison results are listedlable 1, and error percentages in different regions for
the four images are presented. Error threshold is set toafeult 1.0. Meanwhile, sub-pixel threshold 0.75 is also
chosen, and the rank on it can be seen in the last column (RafkFable I.

From Table I, when error threshold is 1.0, the method propasehis paper is the best cost-volume filtering-
based method, and the second best local method (poor tha@eA8us” [10]). However, when errors are evaluated
at sub-pixel level (0.75), our method performs the best & ghlected methods. Sub-pixel evaluation means the
disparity can be a floating number, instead of being limitethteger, and it is useful in practical applications. But
its worth noting that our method has no regard of sub-pixdlictv means all of the disparities are estimated at
integer level. In sub-pixel level, the performance of ourtmoe only has a slight decline (rank from t& to the
13t"), which proves the robustness of our proposed method. Erpatal results on other images in Middlebury

dataset are shown in Fig. 7(b).

B. Real-World Dataset

In this experiment, we choose four real-world sequenceheadest set: th&ookArrival sequence from HHI 3D
video database, thgalloonssequence from FT\CafeandNewspapesequences obtained from GIST. For each test

sequence, we randomly extract a frame with its correspgndiew as test image pair. Besides, some competitive

12
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Fig. 7. Experimental results on Middlebury dataset. (a)-fmpottom: Tsukuba Venus Teddy Cones respectively; left-to-right: color images,
ground truth, results of our method, error maps with thrisslequals 1.0. (b) Other results. Left-to-right: color ilagground truth, and results
of our method.

13
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Fig. 8. Experimental results of our method compared with petitive algorithms on real-world sequences. (a) Left eamFrom (b) to (e):
Results of RecursiveBF, CostFilter, DTAggr-P, and HEBF.Résults of proposed method.

filtering-based methods mentioned above are selected éocdimparison, which are RecursiveBF [8], CostFilter
[5], DTAggr-P [7], and HEBF [6]. The parameter settings ofth methods are the same as recommended in these
papers. The visual results are shown in Fig. 8.

From the visual results we can see that, our method has thieetigs-preserving performance, such as the lion
in BookArrival sequence and objects Balloonssequence. In addition, our disparity results perform welirnage
borders, e.g., the coat on the left bordeBafokArrivaland Newspaper sequences, which is important in practical
applications, such as virtual view synthesis and 3D recoatbn. The experimental results on real-word sequences

again prove the effectiveness of our proposed method.

C. 3D Reconstruction and View Synthesis

In order to verify the effectiveness of our proposed mettibd,three dimensional reconstruction and virtual view
synthesis results are generated based on the disparity ab@gdated by our method. In Fig.9(a), the 3D views of
Tsukubaand Teddyreconstructed by the disparity maps generated by our metbostFilter [5] and ADCensus
[10] are shown. For the red rectangle regions, our methofbpes better than the other two methods.

Another application is the depth-based virtual view sysiheHere, the common used reference software VSRS

from MPEG is utilized to synthesize virtual view at the migdif the two reference views. SequenBadloonsand

14
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Fig. 9. (a) 3D reconstruction dfsukubaand Teddy (b) Virtual view synthesis omBalloonsand BookArrival

BookArrival are chosen for the test. Results based on the disparity neapsajed by Block Matching, CostFilter
[5], DTAggr-P [7], and our proposed method are shown in Figp) 9As shown, there are many artifacts in the
virtual view synthesized by BlockMatch, CostFilter, and Ayjgr-P, while there is no artifact in the synthesized

view by our method, which validate the effectiveness of ouppsed stereo matching method.
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D. Computational Complexity

The computational complexity of our proposed stereo matghiethod is determined by the following four steps:
1) combined cost computation, 2) guided filter aggrega®nnitial refinement, and 4) the RADAR. L&Y be the
number of image pixels, anB be the number of disparity levels. The complexity of the coratl cost computation
is O(ND), the complexity of the cost aggregation@(1) [9] given the integral image and the complexity of
computing integral image i©(N). The complexity of initial disparity refinement i9(N). In RADAR, “small
hole” filling and the MOW can be done i®(N) andO(e), wheree is the number of error pixels. For Canny edge
detector, the complexity i©®(NlogN). The color segmentation in RADAR can be implementedifiViogN) or
evenO(N) with the help of KD-tree or integral image. Therefore, themll complexity of the proposed method
is O(N + ND + NlogN +¢). As D ande are small constants for practical applications, the corigleean be
approximately equal t@(NlogN). In addition, most parts of the method can be implementedaalfel. Thus
the proposed method is applicable for high-resolution iesagr video application.

For Middlebury dataset, the dimensions of imageskuba Venus Teddy andConesare 384 x 288, 434 x 383,
450 x 375, and450 x 375 with the disparity range of 15, 19, 59, and 59, respectiv@lyt algorithm is applied on
each pair of stereo images to calculate the disparity iesiteach case, the computational time is recorded. Our
experiment is implemented on a PC equipped with a 3.40 GH# ¢ore i7 CPU and a 4GB memory. In our proposed
method, the mainly time-consuming parts are the aggreyatiep and the disparity refinement step, accounting
for 60.61% and 24.49% of the total time respectively. Howgeleth of them as well as the cost computation can
be performed in parallel on the GPU. With the help of OpenM&tgof our algorithm are parallelized on the
CPU, the acceleration ratio is abduf x. The computational time foFsukubaVenus Teddy andConesare 3.11s,
5.70s, 12.34s, and 12.48s, respectively. As the algoritasrot been fully optimized, and it is only implemented

on CPU instead of the GPU, it is expected be acceleratedlgiaatur future work.

IV. CONCLUSIONS

In this paper, we propose a secondary refinement scheme anthBined cost to improve the performance of
local stereo matching. The secondary refinement schemeglpd&®ADAR, mainly focuses on handling remaining
artifacts after traditional disparity refinement. In themtwined cost, a modified color census transform (MCCT) is
proposed combined with truncated AD and gradients. Expartal results show that our proposed method achieves
the state-of-the-art performance and is one of the best #deseo matching methods on Middlebury benchmark. In
addition, experimental results on four representativéweald sequences and some depth-based applications show
the effectiveness of our method as well. A parallel impletagon on CPU also demonstrates the parallelizability

of our method.
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