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Abstract. In medical image analysis, a reliable model is required to
detect inputs containing important anatomical information and make
accurate decisions based on it. Motivated by this, we introduce the con-
cept of “out-of-clinical-distribution” (OCD) detection, where in-clinical-
distribution data (ICD) is defined as images containing a “clinically in-
teresting region” that is essential to clinical decision-making. We pro-
pose an OCD detection framework based on a classification-based model,
enhanced by a novel softmax-conditioned variational autoencoder regu-
lariser. In this framework, softmax scores are incorporated into the latent
space with a mixture of learnable class-conditioned Gaussian distribu-
tions as prior. By embedding class information in feature reconstruction,
this approach enforces feature compactness within ICD classes and en-
hances the separability between ICD and OCD features. The effectiveness
of the proposed OCD detection method is demonstrated in the task of
selecting anatomical views from real-time fetal ultrasound (US) videos,
where it significantly outperforms both state-of-the-art classification-
based and generative-based methods.
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1 Introduction

Out-of-distribution (OOD) detection, which ensure reliable deployment of deep
learning (DL) models in the open world, is crucial in medical image analysis
[10]. A reliable DL model should refrain from making clinical decisions for cases
outside its validated expertise, to ensure both patient safety and clinical accuracy
[13]. Defining OOD data in the medical domain is challenging, as it must be
clinically meaningful while accounting for factors such as data acquisition biases.
Common examples of OOD data include inputs that are unrelated to the target
evaluation, incorrectly prepared and previously unseen cases [3].

In this paper, we propose a new OOD definition tailored to the clinical set-
ting. Specifically, we introduce the concept of a “clinically interesting region
(CIR)”, which refers to an area within a medical image containing critical and
clear anatomical information that is essential for clinical decision-making and
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holds particular clinical significance, such as abnormalities. Images containing a
CIR are defined as in clinical-distribution (ICD) data. In real-world scenarios,
such images demand extra attention from clinicians, as they are more likely to
be linked to diseases or require further treatment. Out-of-clinical distribution
(OCD) data refer to sample that lack of CIR. The goal of OCD detection is to
identify the CIRs and discriminate ICD samples from OCD.

Here, we focus on OCD detection in fetal US application. During scanning,
the sonographer adjusts the probe based on their expertise and standard plane
guidelines to capture the optimal view of the fetal anatomy. Once the desired
standard plane is achieved, a freeze-frame is saved and annotated for measure-
ments and the medical report. Sonographers may zoom in, zoom out, and fine-
tune the probe to achieve the optimal view, often holding the probe near stan-
dard planes for extended periods. Therefore, frames captured before and after
the freeze-frame may contain relevant anatomical views, even if they don’t fully
meet standard criteria. These frames are referred to as “approximate standard
planes” because they contain valuable, though not perfectly aligned, anatomical
information. Fetal US examinations typically involve 13 anatomical views. These
views include both standard planes and “approximate standard planes,” which
are considered ICD data as they contain relevant anatomical information. Back-
ground frames, on the other hand, are considered OCD data. A reliable deep
learning model that mimics the sonographer’s scanning and detection process
should not only accurately detect and classify anatomical views but also remain
vigilant to background frames.

Similar to OOD detection [14], an OCD detector defines a score function
that maps input features to an uncertainty score, distinguishing inputs based
on this score. Early approaches primarily focused on classification-based models
[9][1][15], while generative models have gained popularity due to their promis-
ing results despite higher complexity [6][7]. For high-resolution medical imaging,
this increased complexity demands significantly more computational resources,
raising concerns. Meanwhile, anatomical views vary widely due to differences
in probe positioning and fetal movements, often sharing contextual similarities
with background frames captured in close succession during continuous scan-
ning. This high heterogeneity within ICD classes and proximity to near-OCD
frames makes detection more challenging [5]. To address these, we develope a
classification-based model enhanced with a softmax-conditioned VAE as a fea-
ture regulariser. By incorporating softmax scores into the latent space, the VAE
constructs a mixture of learnable class-conditioned Gaussians as priors, enhanc-
ing the constraint on ICD features and improving detection accuracy.

In summary, this paper makes the following three contributions: 1) We de-
fine a new concept of “out-of-clinical-distribution” detection in clinical setting,
in which samples contain “clinical interesting region” are defined as ICD data.
An OCD detector helps identify samples with clinically relevant information for
decision-making; 2) We propose an OCD detection framework that combines a
classification backbone with a softmax-conditioned VAE in the feature space.
The VAE integrates softmax scores into both inference and generative models,
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acting as a feature regulariser to enhance the compactness of ICD clusters; 3) Ex-
tensive experiments on fetal ultrasound video frames demonstrate the simplicity
and effectiveness of the proposed OCD detection method.

2 OCD Detection Definition

Clinically Interested Region (CIR): We define a CIR as an area within a medical
image that contains key anatomical structures with potential clinical significance.
Such regions are of particular interest to clinicians due to their relevance to
patient diagnosis or treatment and often require closer examination or analysis.

Out-of-clinical Distribution (OCD): We define ICD and OCD data as follows,
based on the presence of a CIR:

– ICD Data: An image contains a CIR, where an abnormality or clinically
significant finding is clearly present and requires further examination, diag-
nosis, or treatment.

– OCD Data: An image without a CIR, where no abnormality or clinically
significant finding could be detected. It is a normal image that does not
contain significant medical concerns or require further clinical investigation.

Here, anatomical views showing identifiable fetal structures are considered ICD
data, while background frames lacking clear anatomical details are considered
OCD data. The goal of OCD detection is to distinguish anatomical views from
background frames in real-time ultrasound videos, which is crucial for two rea-
sons. First, only standard planes are typically annotated and saved during scan-
ning, yet anatomically informative frames appear throughout the scanning. Iden-
tifying these additional views offers deeper insights into fetal health and devel-
opment. Second, detecting these frames provides valuable visual guidance for
recognising critical anatomical information in real-time, potentially reducing the
need for extensive training and experience for sonographers.

3 OCD Detection Methodology

Here Dtrain and Dtest represent dataset used for classification training and OCD
detection testing, respectively. Dtrain contains labeled ICD data only, where
Dtrain = {(xi, yi)}Ni=1 and yi ∈ {1, 2, ..., L}. Dtest consists of both ICD and
OCD data. The task is to distinguish whether a testing input is in or out of
clinical distribution and consists of three steps as depicted in Fig. 1.

3.1 Training Stage

Classification Model. We adapte the approach from [15] to project ICD
features obtained from the classification model onto a union of 1-dimensional
subspaces, with each class occupying a distinct, mutually orthogonal subspace.
Such projection provides a stronger constraint on the feature space compared to
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Fig. 1: OCD detection framework: (a): Training stage (b): Class representative
calculation. (c): OCD detection stage. (a∗): graphical model of the proposed
SC-VAE (→: generative model; 99K: inference model).

traditional approach. To achieve this feature embedding, two key adjustments
were made. First, the weights of the last fully connected layer are initialised
with predefined orthonormal vectors and kept frozen during training. Second,
cosine similarity is utilised in the calculation of the softmax function. For a
given input xi, the predicted probability of belonging to class l is calculated as
pi,l =

ci,l∑
j ci,j

, followed by a sharpening operation to enhance class discrimina-

tion. Here, ci,l =
wT

l fi
||fi|| denotes the cosine similarity between the weight vector wl

of the last fully connected layer corresponding to class l and the feature vector
fi of input xi. Therefore, the feature vectors from class l are constrained to form
a 1-dimensional subspace aligned with the direction of wl.

Softmax-Conditioned Variational Autoencoder (SC-VAE). In standard
VAE, an isotropic Gaussian is commonly used as the prior over the latent space.
However, this choice can hinder the model’s ability to learn more complex rep-
resentations [2]. For instance, when a shared prior is used for latent features of
inputs from different classes, class-specific information may be lost during re-
construction. To address this, we propose incorporating softmax scores into the
VAE to provide class membership information, thereby segregating the latent
space into distinct classes to improve the quality of learned representations.

We use a mixture of class-conditioned Gaussian distributions as prior, with
softmax scores providing a probabilistic measure of how likely a sample belongs
to each Gaussian distribution. We assume that OCD features deviate from ICD
features during training due to significant differences in reconstruction error.
This deviation may be amplified by adding softmax scores, as ICD scores are
typically biased toward the correct class, while OCD scores are more uniformly
spread across incorrect classes, leading to larger reconstruction errors. This mod-
ified VAE, referred to as the softmax-conditioned VAE, is applied to the feature
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space as a regulariser to enhance the model’s ability to learn meaningful, class-
specific features, therefore improving feature compactness within each class.

Here, we hypothesis that enforcing the compactness of each ICD class can
improve OCD detection. Assuming that OCD samples and ICD samples from
class l follow two multivariate Gaussian distributions, N (µO, ΣO) and N (µl, Σl),
respectively, the difference between these distributions can be quantified using
the Bhattacharyya distance. This distance is calculated as the sum of the Ma-
halanobis distance between µO and µl and a measure of compactness for both
distributions. Therefore, by making each N (µl, Σl) more compact, the Bhat-
tacharyya distance increases, enhancing the separation between OCD and ICD
distributions and improving OCD detection performance.

Fig.1(a*) shows the graphical model of the proposed SC-VAE, where softmax
scores are incorporated in both generative and inference processes. In the gen-
erative model, the latent variable zi is sampled from class-conditioned Gaussian
distributions, with the probability of sampling from a specific class distribution
determined by its softmax score. The probability density function (pdf) of zi
conditioned on class l is formalised as:

pθ(zi|l) ∼ N(µθ(l), diag(σ
2
θ(l))), (1)

where µθ(·) and σ2
θ(·) are generated by a class-conditioned encoder parameterised

by θ(·) : RL → Re. pθ(zi|l) is used as the Gaussian prior for class l.
In the inference model, the posterior of zi is dual-conditioned on both the

input feature and class, with its pdf given by:

qϕ(zi|fi, l) ∼ N(µϕ(fi, l), diag(σ
2
ϕ(fi, l))), (2)

where µϕ(·) and σ2
ϕ(·) are generated by a feature-class dual-conditioned encoder

parametrised by ϕ(·) : Rd+L → Re, d denotes the dimension of latent space.
The designed SC-VAE is trained using evidence lower bound optimisation

(ELBO) [12], which involves minimising two losses: the reconstruction loss be-
tween the input features and generated targets (measured by MSE) and the
distribution discrepancy between the prior and posterior in the latent space
(measured by KL divergence). Given the softmax score pi,l, which indicates the
likelihood of input xi belonging to Gaussian distribution conditioned on class l
in the latent space. The loss function of the designed SC-VAE is defined as:

Lvae =
1

N

N∑
i=1

L∑
l=1

pi,l × {MSE(fi, f̂i|l) +KL[qϕ(zi|fi, l)||pθ(zi|l)]}. (3)

We jointly train the backbone classification model with the proposed SC-VAE
regulariser, with the loss function defined as:

Ltrain = αcls × Lcls + αvae × Lvae, (4)

where αcls and αvae are the weights for classification loss and VAE loss. KL
distances are estimated using a single latent sample [2]. A potential issue of
“posterior collapse” is avoided as priors pθ(zi|l) are learnable and informative.
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3.2 Class Representative Calculation

The first singular vector has been used as a robust estimator of mean and co-
variance in statistics [4]. According to [16], the first singular vector can also be
treated as a class representative, as it preserves most of the information and is
robust to noise and augmentation. Here, we use it as a representative for each
ICD class. For ICD class l, its corresponding first singular vector ul is obtained
using singular value decomposition (SVD) on the matrix formed by aggregating
the input features of the training data from that class.

3.3 OCD Detection

At test time, the minimum cosine similarity between the test feature ft and each
class representative {ul}Ll=1 is used as the uncertainty score for OCD detection,
and it is calculated as: δt = minl(arccos(

fT
t ul

||fT
t || )). The corresponding test input xt

is classified as ICD or OCD based on the Eq. 5, where δT is the chosen threshold.

yt =

{
0(ICD) if δt < δT

1(OCD) otherwise
(5)

The probability of a test input xt belonging to ICD could also be calculated
using probability function P (δt < δT |xt ∈ Dtest). By employing Monte Carlo
sampling on δn, the probability function is estimated as 1

M

∑M
m=1 1(δ

m
t < δT ),

where M is the number of Monte Carlo samples and δmt is the m-th sample.

4 Results

4.1 Ultrasound Data

We use a large-scale routine clinical fetal ultrasound dataset in our experiments.
342 second-trimester scans are used for training and testing. Around 6,650 freeze-
frame images have been saved and manually annotated as one of 13 standard
plane views - 4CH, 3VV, RVOT, LVOT, Brain (cb.), Brain (tv.), Lips, Abdomi-
nal, Kidney, Femur, Spine (Sag.), Spine (Cor.) and Profile. We used these frames
to create the ICD dataset of 13 classes, splitting 80% for training and 20% for
testing. Since a huge number of background frames and non-standard anatomical
views remain unlabeled and largely indistinguishable, there is no ready-to-use
OCD dataset. To address this, we manually created an OCD dataset by select-
ing 1,085 background frames based on three specific criteria: frames containing
only dark amniotic fluid without visible fetal anatomy, frames with ultrasound
artifacts (such as acoustic shadows or speckle noise) that obscure anatomical
details, or frames with empty regions when the probe was briefly moved away
from the fetus. These criteria ensured that the OCD dataset contained no clear
anatomical information. The testing dataset for OCD detection includes both
ICD testing data and OCD data.
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Table 1: Evaluation Metrics for OCD detection
Metric Description

Detection Error (%) ↓ Minimum misclassification rate over all possible thresholds.
AUROC ↑ Area under the FPR against TPR curve.
δT at 95% TPR (×10−2) ↑ Angular distance based decision boundary at 95% TPR.
FPR at 95% TPR (%) ↓ Percentage of ICD data that wrongly classified as OCD at 95% TPR.

Table 2: Quantitative comparison of OCD performance on fetal US. The best
results in each of the three method categories are marked in bold.

Method FPR at 95% TPR (%) ↓ δT at 95% TPR (×10−2) ↑ Detection Error (%) ↓ AUC ↑

Classification-based

MSP [9] 25.8 38.92 11.32 94.32
ODIN [1] 18.64 43.58 8.92 96.13
Mahalanobis [11] 32.57 29.37 15.21 87.62
U1D [15] 12.7 50.25 7.86 97.19
SC-VAE Reg. (ours) 9.17 57.45 6.86 97.53

Generative-based

AE 47.85 21.68 19.82 81.55
MemAE [6] 21.58 39.73 12.88 88.69
DDPM [7] 12.06 54.18 7.41 95.51

Dual Heads

DDPM + ours 9.12 57.92 6.69 97.64

4.2 Implementation Details

We use ResNet-18 [8] as the backbone architecture for the classification model.
The proposed SC-VAE and classification model were jointly trained using the
PyTorch framework and an SGD optimiser for 200 epochs with a batch size of
32, a moment of 0.9, a weight decay of 1× 10−4 and an initial learning rate 0.1
that decayed by 0.1 after every 60 epochs. Data augmentation was performed
including horizontal flipping, brightness variation, resizing, and center cropping.

4.3 Evaluation Metrics

During evaluation, OCD and ICD images are treated as positive and negative
samples, respectively. Four metrics are used to evaluate OCD detection perfor-
mance, as summarised in Table 1. Among these metrics, keeping a low FPR is
particularly important clinically, as it helps avoid missing valuable information
or questionable cases that could lead to severe consequences.

4.4 Quantitative Results

Table 2 presents a quantitative evaluation of OCD performance in comparison
with different methods. The table indicates that our proposed mothod with the
SC-VAE regulariser outperformed four selected state-of-the-art classification-
based methods, i.e. MSP [9], ODIN [1], Mahalanobis [11], and Union of 1-D
(U1D) [15] by 16.63%, 27.81%, 23.4%, and 3.53% respectively in FPR at 95%
TPR. These improvements are statistically significant under the two-sided t-
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(a) t-SNE (U1D) (b) t-SNE (ours) (c) PCA (U1D) (d) PCA (ours)

Fig. 2: PCA and T-SNE visualizations of baseline and PP-VAE boosted methods

test. The improvement in δT indicates a larger ICD conical region spanned from
each class representative vector, while keeping 95% of OCD samples outside the
region, which in line with the hypothesis that the proposed design enhances
the separation between ICD and OCD data and is crucial for near-OCD cases.
Among generative-based methods, AE performs the worst, likely due to its lim-
itations in recognising and reconstructing complex medical images as a simple
reconstruction approach. This is particularly challenging when near-OCD ap-
pears, as AE may fail to capture subtle differences. The improved performance
of MemAE [6] highlights the importance of incorporating class information in
OCD detection, which is also a key aspect of our design. Notably, our method
also outperformed DDPM for OCD detection [7], a recent trend known for its
effectiveness but complexity. Compared to DDPM, our approach offers a sim-
pler yet effective alternative, benefiting from both computational complexity and
performance. We also test a dual-head model where our method and DDPM are
trained simultaneously. Although this setup shows a slight, but not statistically
significant, improvement in performance, the substantially increase in computa-
tional cost might not worth the trade-off. Our method offers the best balance
between computational complexity and performance.

4.5 Qualitative Results

Fig. 2 presents two types of visulisation of testing features, in which our method
is compared with U1D, the second-best-performing classification-based model.
The t-SNE plots provide a 2-D visualisation of both ICD and OCD features,
showing greater separation of OCD features from ICD, especially for classes sim-
ilar to OCD. This improvement in performance for classes near OCD is achieved
without compromising performance on classes that are more distinct. The 3D
PCA plots display both class representatives (solid lines) and ICD testing fea-
tures (circles). The clustering of testing features centered around each solid line
validates the choice of the first singular vector as class representatives. Addi-
tionally, the reduced spread of circles around the solid lines indicates increased
compactness within each ICD class.
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Table 3: Ablation study on the effectiveness of adding different feature regu-
lariser. The best results are marked in bold.

Metric No Reg. +AE + vanilla CC-VAE +CC-VAE +SC-VAE (ours)

FPR at 95% TPR (%) ↓ 12.70 12.84 11.34 12.17 9.17
δT at 95% TPR (×10−2) ↑ 50.25 54.87 56.93 55.13 57.45
Detection Error (%) ↓ 7.86 8.23 7.72 7.72 6.86
AUROC ↑ 97.19 96.84 97.03 97.07 97.53

4.6 Ablation Studies

An ablation study is conducted to evaluate the effectiveness of adding different
regularisers to the feature space. The results are shown in Table 3. Here, CC-
VAE refers to a class-conditioned VAE where classification labels are incorpo-
rated as class information. However, assigning incorrect classes to OCD samples
could lead to biased results and hinder feature learning. Vanilla CC-VAE uses
a standard Gaussian prior, while CC-VAE employs a learnable Gaussian prior.
Our proposed SC-VAE regulariser achieves the best performance, aligning with
our hypothesis and demonstrating the effectiveness and robustness of our de-
sign - incorporating a learnable Gaussian prior for each class and using softmax
scores to provide more accurate class information.

5 Conclusion

In this paper, we introduce the concept of “out-of-clinical-distribution” detection
for medical image analysis. We define ICD data as images containing clinically
significant anatomical information, while OCD data refers to images lacking such
information for clinical decision-making. We propose a novel OCD detection
method by introducing a softmax-conditioned VAE as the features regulariser,
which incorporates softmax scores into both the inference and generative models
with a class-conditioned mixture Gaussian prior, to enhance ICD feature com-
pactness and OCD detection performance. Experiments on fetal ultrasound video
show the effectiveness of the proposed method over both classification-based and
generative-based approaches. It achieves comparable results when using a dual-
head model trained with DDPM, indicating that our method benefits from both
computational complexity and performance. In the future, the proposed concept
could be applied to different data modalities and tasks, and the proposed method
could be adapted for use across various data types.
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