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Abstract

This paper concerns how machine learning explainability advances understanding
of self-supervised learning for ultrasound video. We define the explainability as
capturing anatomy-aware knowledge and propose a new set of quantitative metrics
to evaluate explainability. We validate our proposed explainability approach on
medical fetal ultrasound video self-supervised learning and demonstrate how it can
guide the choice of self-supervised learning method. Our approach is attractive as
it reveals biologically meaningful patterns which may instil human (clinician) trust
in the trained model.

1 Introduction

Self-supervised (or unsupervised) representation learning models have shown recent success in
the field of medical imaging. While some approaches have outperformed human experts [3], lack
of algorithm explainability has hindered wide applications [2]. Doctors, medtech regulators, and
computer scientists alike need to understand how machine learning algorithms work, and when they
may lead to false results [13]. Thus model explanation plays a key role in the evolution of deep
learning in medical imaging and in building trust in automatic learning-based decisions [16].

A number of papers concern understanding general deep learning models [16, 1, 17, 15, 11]. Most
focus on model visualization, and include permutation-based [15], propagation-based [11, 12] or
attention-based methods [18, 10]. The visual-based explanations are generally coarse, especially
when the information is diffuse. Quantitative metrics for explainability have been proposed [1, 17],
but are still limited. The explainability of self-supervised models, on the other hand, is underexplored.

In this paper, we consider the question: how can we quantitatively explain the effectiveness of
self-supervised representation learning? We explore the question using medical fetal ultrasound
video from mid-pregnancy and define explainability as capturing anatomy-aware knowledge. A set
of quantitative explainability metrics are proposed, based on visually salient landmarks [5]. We
propose to interpret the quality of representation learning using the quality of landmark CNN feature
clustering, with the assumption that landmark CNN features capture anatomy-aware knowledge.
Our metrics provide a plausible guide for the choice of appropriate self-supervised learning method,
without performing downstream tasks. By using visually salient landmarks, the method also presents
a better understanding of the AI-based explanation in a clinically meaningful way.

2 Methodology

The framework of proposed explainability method is summarized in Fig. 1 and consists of four steps:

Firstly, we predict the saliency map and extract local maxima. Sonographers (the clinical operator
doing the ultrasound scanning) tend to focus on anatomical informative regions to understand the
image [5]. The visual attention is quantified by the saliency map. Here, we use the Saliency-VAM
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Figure 1: Proposed explainability method framework for self-supervised learning on medical ultra-
sound video, where the input ultrasound is shown in the top left.

model [5] to predict the saliency map and extract the corresponding local maxima, where the highest
visual attention is located. Such local maxima can be considered as visually salient landmarks, and
are proved to correspond to key anatomical structures in US scans [4].

The second step is self-supervised pre-training according to defined pretext tasks: temporal sequence
sorting [8], rotation prediction [7] and pace prediction [14]. These models are trained with a 3D
ResNet-18 [7] (with blocks adapted according to the Saliency-VAM model) as backbone network
architecture with a SGD optimizer of momentum 0.9 and weight decay 1× 10−4.

The remaining two steps are 3) clustering self-supervised model features at visually salient landmarks
across images using K-means, and 4) measuring the clustering quality with the proposed metrics
(below). We assume that in order to learn explainable representations, the model should focus on
anatomically informative regions. Therefore, the corresponding features should well-cluster to align
the visually salient landmarks. Hence, we use the quality of clustering to express the explainability of
the learned representations.

Here, we introduce three quantitative metrics to measure clustering quality: the Silhouette Coefficient
[9], cluster Compactness and Uniqueness. We use the Euclidean norm as a distance metric, partition
extracted CNN features {xi}ni=1 into K clusters.

Silhouette coefficient (S) aims to explain the consistency of clustering and quantifies how similar
a data point is to its cluster compared with the other clusters [9]. S is defined as

S =
1

n

n∑
i=1

b(xi)− a(xi)

max{a(xi), b(xi)}
, (1)

where a(xi) is the mean distance between xi and other xj(j 6= i) in the same cluster Cl and
b(xi) = mink 6=l

1
|Ck|

∑
xo∈Ck

||xi, xo||22, i.e. the minimum mean distance to other clusters.

Compactness (DC) quantifies the inter-class deviation, which evaluates how similar an object is to
its own cluster. Here, τ is a scaling factor, µ̂k is the centroid of k-th cluster Ck. DC is defined as

DC =
1

n

K∑
k=1

∑
i∈Ck

||xi − µ̂k||22
τ

. (2)

Uniqueness (DU ) quantifies the intra-class deviation. It is defined to consider both distance and
angle separation. We use the cosine similarity to emphasize the direction (of cluster centroid to data
mean x̄) and µ̂1 − x̄ as a base reference vector. DU is defined as

DU =
1

n

K∑
k=1

|Ck|
exp{||µ̂k − x̄||22 −

(µ̂k−x̄)·(µ̂1−x̄)
||µ̂k−x̄||||µ̂1−x̄||}

τ
. (3)
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Figure 2: Performance of the proposed metrics
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Figure 3: Evaluation results on downstream task

Figure 4: The clustering results illustrated by t-SNE.

3 Experiments and results

3.1 Data

We use a large-scale routine clinical fetal ultrasound dataset (Research Ethics Committee Reference
18/WS/0051) in our experiments. 342 scans (715,968 frames) are used for training self-supervised
learning models. These models are trained on a single NVIDIA GTX 1080 Ti GPU. 135 scans
are used to train and test the downstream task with three-fold cross-validation. A set of 214,970
clinician-labelled video frames are used to train a supervised anatomy classification model as an
upper bound reference model. An additional 122 ultrasound scans are used for independent testing of
the proposed metrics.

3.2 Quantitative evaluation

Quantitative evaluation results of the proposed metrics are presented in Fig. 2. A baseline model of
random initialization is included as a lower bound, together with a supervised model as an upper
bound. Results show the upper and lower bound models have the best (e.g. 0.403 for Uniqueness)
and worst (0.113) clustering quality. Among the tested self-supervised learning models, the sequence
sorting (Seq. Sort) model has the highest clustering quality (0.351). Therefore, the Seq. Sort model
is selected as the recommended approach for representation learning accordingly. Fig. 4 shows the
t-SNE plots of clustering results, which align well with the findings above.

3.3 Effectiveness validation

To further validate the effectiveness of the proposed metrics, we adopt the self-supervised learning
evaluation practice, by fine-tuning the pre-trained self-supervised models on a downstream task:
standard plane detection, a 14-class classification task [6]. Fig. 3 shows that Seq.Sort performs the
best (e.g. 0.679 for Precision), while Rand.Int. and Supervised serve the lower (0.625) and upper
(0.681) bounds. The results are in agreement with the performance reported in Fig. 2.

4 Conclusion

In this paper, we address the problem of self-supervised representation learning explainability for
medical ultrasound video, by proposing explainable quantitative metrics. Experimental results
demonstrate that our proposed quantitative metrics work well in explaining the anatomy-aware
knowledge captured during representation learning. Although showcased with ultrasound video, the
only assumption is that the landmarks are available. Hence this approach is well-suited in other
medical imaging applications of self-supervised learning.
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Potential social negative impacts

The paper describes a technical solution aimed at advancing explainability of self-supervised learning
for medical fetal ultrasound video. The proposed method reveals biologically meaningful patterns
and the ability of a CNN to capture anatomy-aware knowledge via representation learning. Although
the proposed metrics output statistics that reveal explainability, this is unlikely to be sufficient to
communicate with patients alone without any formal clinical explanations. The purpose of the
research is to advance knowledge of design of methodology that may aid ML developers, and possibly
clinicians and medical device regulators to build trust in a trained model. The utility of the method
has yet to be formally evaluated for clinical use.
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