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ABSTRACT

Implicit Neural Representation (INR) has been emerging in computer vision in
recent years. It has been shown to be effective in parameterising continuous
signals such as dense 3D models from discrete image data, e.g. the neural
radius field (NeRF). However, INR is under-explored in 2D image processing
tasks. Considering the basic definition and the structure of INR, we are inter-
ested in its effectiveness in low-level vision problems such as image restora-
tion. In this work, we revisit INR and investigate its application in low-level
image restoration tasks including image denoising, super-resolution, inpainting,
and deblurring. Extensive experimental evaluations suggest the superior per-
formance of INR in several low-level vision tasks with limited resources, out-
performing its counterparts by over 2dB. Code and models are available at:
https://github.com/WenTXuL/LINR.

1 INTRODUCTION

Implicit neural representation (INR) has been emerging in recent years. INR is a special type of
continuous signal representation. It uses neural networks (typically multilayer perceptron, i.e. MLP)
to parameterise complex signals such as 3D shapes as in NeRF (Mildenhall et al., 2021). This
representation has good storage efficiency and is widely used in 3D reconstruction because it can
represent continuous output signals from discrete forms. Most of existing research on INR has been
focused on 3D tasks, while it is under-explored in 2D low-level vision problems. In this paper, we
are interested in the question: How does INR perform in low-level vision?

Low-level vision has always been a fundamental problem in computer vision. It mainly focuses on
pixel-level problems such as image denoising, super-resolution, inpainting, and deblurring, to name
a few. These image restoration tasks aim to obtain high-quality images from their corrupted versions.
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Figure 1: The proposed LINR aims to restore the
original latent clean image (in terms of the RGB
values of each pixel) from different types of cor-
ruptions, by only looking at the coordinates of the
pixels within the input images.

With the development of computational re-
sources, deep learning has been shown to be ef-
fective in addressing these tasks (Zhang et al.,
2017; 2018; Lai et al., 2017; Yu et al., 2018),
while it usually requires large amounts of data
with paired clean images for training the deep
model. However, it is often difficult to ob-
tain large-scale data with ground-truth clean
images, and such methods tend to result in poor
performance when the distribution of training
data differs from that of the test data.

Therefore, image restoration based on a single
image, i.e. obtaining a clean image from only
one corrupted image without the ground-truth
clean image, has become a promising solution
in this field. Deep image prior (DIP) (Ulyanov
et al., 2018) investigates this solution by show-
ing the potential of deep convolutional net-
works in addressing image restoration tasks
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without dataset-scale training. Some denoising works (Krull et al., 2019; Lehtinen et al., 2018)
also get rid of the ground-truth clean image and only need noisy images, but they still need a
dataset to train the model. Self2Self (Quan et al., 2020) follows these works by revising the network
with dropout and mask, obtaining a high-quality clean image from a single noisy image. Zero-shot
super-resolution (ZSSR) (Shocher et al., 2018) accomplishes super-resolution tasks with only one
low-resolution image based on a fully convolutional network.

All these methods follow the conventional convolutional neural architecture, while the MLP (multi-
layer perceptron) architecture that supports the INR is under-explored for low-level vision tasks.
As a result, we are interested in its capability and performance in addressing low-level tasks, when
given only one single image, similar to the aforementioned setting.

In our work, we propose to investigate the effectiveness of INR in low-level vision problems (LINR).
We show the advantages of LINR on four low-level image restoration tasks, including image denois-
ing, super-resolution, inpainting, and deblurring. When given the same amount of limited resources,
LINR shows significantly better performance than other alternative approaches, validating the effi-
ciency and effectiveness of the INR-based image restoration approach.

We further study the case where there are multiple corruptions by joint training the INR-based
method. Surprisingly, LINR shows much better performance than training with only one corrup-
tion, suggesting its effectiveness in extracting beneficial features from both corruptions during joint
optimisation. The main contributions of this work are summarised below:

• By revisiting INR in low-level vision tasks, we show the value and significant advantages
of INR for image restoration tasks with limited resources.

• The proposed LINR is not restricted to one particular task, but generalises well to several
different low-level vision tasks.

• We show that INR-based approaches can significantly benefit from joint training with mul-
tiple corruptions. This is a bit counter-intuitive as conventional image restoration methods
are usually confused given multiple types of corruption.

2 RELATED WORK

Implicit neural representation. Implicit neural representation (INR) has seen significant research
interest in recent years. It focuses on parameterising a continuous differentiable signal with a neural
network. This idea has been widely applied in 3D reconstruction tasks (Mildenhall et al., 2021;
Mescheder et al., 2019; Park et al., 2019; Saito et al., 2019; Sitzmann et al., 2019; Oechsle et al.,
2019; Michalkiewicz et al., 2019). Whereas there is relatively fewer INR work on 2D image tasks,
mainly focusing on image generation (Dupont et al., 2021; Shaham et al., 2021; Skorokhodov et al.,
2021; Anokhin et al., 2021), and super-resolution (Chen et al., 2021; Xu et al., 2021). For super-
resolution tasks, We want to highlight that these methods require a large amount of data for training,
whereas our LINR is concerned with cases where additional data is not required. In addition, the
traditional MLP with the ReLU activation function (Nair & Hinton, 2010) is difficult to parameterise
image signals. Sitzmann et al. (2020) proposed SIREN to solve this problem.

Image restoration and Zero-shot image restoration. As a low-level vision task, image restora-
tion aims at obtaining a high-quality image from a corrupted image. Our work focuses on denoising,
super-resolution, inpainting and deblurring. Most of the existing methods (Lehtinen et al., 2018;
Krull et al., 2019; Batson & Royer, 2019; Lai et al., 2017; Shocher et al., 2018; Pathak et al., 2016;
Gao & Grauman, 2017; Mataev et al., 2019) require large datasets for training, which in many cases
are difficult to obtain. Researchers therefore propose methods that do not require extra data, also
known as zero-shot methods. Self2self (Quan et al., 2020) extends the idea of noise2void (Krull
et al., 2019) by using masks and dropout to allow the model to learn enough information on a single
noisy image. ZSSR (Shocher et al., 2018) can complete super-resolution tasks without any dataset.
Most of these methods focus on a single task or a few tasks. However, deep image prior (DIP)
(Ulyanov et al., 2018) shows that the convolutional generative model can be applied as a good image
prior for most image restoration tasks without any additional training on data. DeepRED (Mataev
et al., 2019) has improved the DIP method based on RED (Romano et al., 2017). Our research also
focuses on this zero-shot case. All of the previously mentioned methods are based on convolutional
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kernels. They also rely on some special structures like skip-connections. We show that, without
these structures, LINR also performs well in these tasks.

3 INR IN LOW-LEVEL IMAGE RESTORATION

Our work is based on implicit neural representation (INR). The aim of INR is to parameterise com-
plex continuous signals by a neural network. In the case of a 2D colour image, INR is a mapping
from the 2D coordinates system to the RGB value space: f : R2 → R3, f(x, y) = (r, g, b).

As opposed to conventional training strategies that rely on a large dataset, INR is able to accomplish
image restoration tasks by parameterising image signals in only one image. For instance, when we
train our LINR to represent noisy images, the noise will be inhibited in the early training iterations.

Figure 2: During training, the PSNR between the
model output and the ground-truth clean image
(the blue curve), and the PSNR between the out-
put and the original noisy input (orange curve).

As shown in fig. 2, the blue curve is the PSNR
between the model output and the clean image.
The orange curve is the PSNR between the out-
put and the noisy input image. We can see that
this training process suppresses the learning of
noise. Although we only use the noisy image
for training, the output approaches the clean im-
age in the early iterations. Continued training
will result in noisier results, but due to suppres-
sion, it is hard for INR to learn the exact same
input noisy image without enough capacity.

In addition, we have found that the process of
training INR to represent images can also com-
plement the missing information in corrupted
images, such as low-resolution images. We at-
tribute all the above findings to the assumption
that when training on the image, INR applies
implicit restrictions on the output, including local continuity, global consistency, smoothness ten-
dency in early iteration etc. These properties also exist in natural clean images, e.g. neighbouring
pixels often change smoothly. As a result, the output that follows these restrictions is close to
high-quality clean images. These restrictions are embedded in the structure and training process of
INR. For example, local continuity comes from continuous representation, part of global consistency
comes from the sine activation function, and smoothness tendency comes from the training tendency
of parameterised methods as these methods often tend to achieve smooth training at the beginning.

Based on this assumption, we propose the LINR and train on the corrupted image to achieve a high-
quality clean target, which is achieved by the parameterising process. The implicit restriction hidden
in this process will make sure the representation learned by LINR has the properties of a high-quality
image while containing the information in the corrupted image. For different image restoration tasks,
the only difference is the method of obtaining information from the corrupted image, i.e. the setting
of the loss:

min
θ

∥fθ(c)− x0∥2 . (1)

For the denoising task, as shown in eq. (1), the LINR is simply trained on the corrupted image with
the L2 loss, and then the output is the clean image in an early iteration. For the super-resolution
task, we assume that the INR represents a high-resolution image and has the loss function:

min
θ

∥D(fθ(c))− x0∥2 , (2)

where D(·) is the downsampling method to get the low-resolution result from the LINR output.
Ideally, this low-resolution result should be similar to the original low-resolution image we actually
have. In this case, the implicit restrictions of INR help with the reconstruction of details in the
high-resolution image.

For the inpainting task, we assume that the LINR represents a high-quality image and has the loss
function:

min
θ

∥M(fθ(c))−M(x0)∥2 , (3)
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where M(·) is the masking function. As shown in eq. (3), we just need to ensure that the unobscured
part of the original image is similar to the INR result, i.e. only the pixels without masks will be used
for training. As a result, the LINR training process will restore the obscured position.

The non-blind deblur task is similar to super-resolution and we have the loss function:

min
θ

∥B(fθ(c))− x0∥2 , (4)

where B(·) is the blur kernel. The output of LINR is blurred using the blur kernel, and then the
blurred image is forced to be close to the original corrupted image as defined in the loss eq. (4).

Overall, LINR is designed to represent and reconstruct high-quality clean images directly. Following
that, its output is compared to the original corrupted image as a loss function to train the model.

4 EXPERIMENT

In this section, we evaluate and investigate the effectiveness of the proposed LINR over four low-
level vision tasks, including image denoising, super-resolution, inpainting and deblurring. We also
explore the performance of LINR when facing more different corruptions.

The implementation of LINR is based on SIREN (Sitzmann et al., 2020), which is a recent INR-
based work replacing the activation function of the MLP with the sine function. This gives INR the
ability to model information contained in higher-order derivatives, and the periodic feature of sine
also provides SIREN with a degree of shift-invariance, which fits well with the properties of the
image, as images often have repetitive information and feature. The width of the MLP model for all
experiments is set to 256 and the depth to 6. The default learning rate is set to 10−4. The experiment
is conducted on an NVIDIA GPU A100.

The parameters are initialised following SIREN. By default, the training iteration is the same (500
unless otherwise specified) for all the deep-learning methods and images in each task, for a more
stable and fair comparison and to show the performance of image restoration with limited resources.
PSNR and SSIM are used for the evaluation metrics.

Table 1: Denoising performance (PSNR/SSIM) on Set9.

Images DIP (Ulyanov et al., 2018) S2S (Quan et al., 2020) LINR(Ours)

Baboon 19.68/0.502 20.29/0.581 23.67/0.794
F16 25.27/0.871 24.14/0.880 30.36/0.916
House 28.34/0.887 24.31/0.851 23.10/0.580
Lena 26.72/0.851 25.31/0.861 30.27/0.896
Peppers 24.78/0.813 24.34/0.823 29.46/0.860
K01 22.19/0.624 22.40/0.711 25.99/0.818
K02 27.83/0.834 26.21/0.829 29.66/0.866
K03 27.63/0.869 24.77/0.860 30.40/0.903
K12 27.47/0.858 24.93/0.864 30.34/0.892
Average 25.55/0.790 24.08/0.807 28.14/0.836

4.1 DENOISING

First, we show the performance of LINR on image denoising. We use the Set9 dataset as in (Ulyanov
et al., 2018) and add Gaussian noise with σ = 25. The result is shown in table 1 and fig. 3a. It can be
seen that the average results of LINR are significantly better than the other methods for both SSIM
and PSNR. As mentioned before, LINR needs to stop early in the training period for denoising, and
the best stopping position is different for different images. This is especially the case if the size of
the image is different. However, the same stopping point is chosen for all images and methods for a
fair comparison. So LINR’s results are poor on smaller-size images like the house (256*256). INR
is so efficient that it learns to represent the clean version very quickly on these small images and
then moves on to learn more noise information. The training time for LINR on a 256*256 image is
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8.3s, and 14.3s for DIP as a comparison. For higher-resolution images, LINR will take more time as
it is trained on all pixels with MLP.

(a) Denoising

(b) Super-resolution

(c) Inpainting

(d) Deblurring

Figure 3: Qualitative results of different tasks with comparison to state-of-the-arts.

4.2 SUPER-RESOLUTION

We then conduct experiments for image super-resolution on Set5 (Bevilacqua et al., 2012) with a
sampling factor of 4. The downsampling method used in the loss function is lanczos2 (Turkowski,
1990). The results are shown in table 2 and fig. 3b, from which we can see that the LINR performs
significantly better than the other methods both quantitatively and qualitatively.

4.3 INPAINTING

For the inpainting experiments, the mask is generated randomly. We show the results on sparsity 0.1.
This means only ten percent of pixels remain after the masking. Again, LINR performs significantly
better than the other methods, as shown in table 3 and fig. 3c.
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Table 2: Super-resolution results on Set5 with fac-
tor = 4.

Images Bicubic Nearest DIP (Ulyanov et al., 2018) LINR

Baby 30.73/0.916 27.76/0.875 26.40/0.827 31.20/0.921
Bird 28.44/0.917 25.22/0.851 25.57/0.797 30.48/0.944
Butterfly 21.18/0.797 18.85/0.725 22.68/0.857 24.29/0.898
Head 29.08/0.841 27.79/0.811 26.58/0.768 29.58/0.854
Woman 25.39/0.885 22.90/0.827 24.28/0.837 27.44/0.924
Average 26.96/0.871 24.50/0.818 25.10/0.817 28.60/0.908

Table 3: Inpainting results on images with sparsity
of 0.1 Bernoulli random masks.

Images DIP (Ulyanov et al., 2018) S2S (Quan et al., 2020) LINR

Kate 25.87/0.893 22.60/0.841 31.78/0.956
Baby 25.99/0.826 24.36/0.802 29.27/0.903
Bird 24.88/0.800 21.78/0.736 28.21/0.922
Butterfly 20.59/0.827 18.04/0.706 21.05/0.853
Head 26.53/0.770 22.94/0.743 26.39/0.775
Woman 23.53/0.840 20.35/0.747 24.41/0.892
Average 24.57/0.826 21.68/0.763 26.85/0.884

4.4 DEBLURRING

For the deblurring task, we show the results for the Gaussian blur in table 4 and fig. 3d. A Gaussian
kernel of width 25 and sigma 1.6 was chosen as the blur kernel. We can see that LINR performs
better than the other methods. In this task, the iteration was set to 4000, as a lower number of
iterations results in unreasonable results.

Table 4: Deblurring results (PSNR) on Gaussian blurred images (σ = 1.6, width = 25).

Images DIP (Ulyanov et al., 2018) DeepRED (Mataev et al., 2019) LINR

Leaves 28.15 29.85 30.10
Parrot 30.03 31.30 32.84
Starfish 28.99 30.08 31.78
Butterfly 28.96 30.15 30.07

Average 29.03 30.35 31.20

4.5 JOINT TRAINING

Here we explore the performance of LINR under multiple types of different corruption. The models
are jointly trained with two corrupted images, which are derived from the same original image but
with different corruption types. We found that LINR performs very well on joint training tasks. It
can combine information from different corrupted images while not being misled by the differences
between the corruptions. We tested joint training on super-resolution, denoising, and inpainting.
The average PSNR performance of joint training with denoising and super-resolution tasks with
limited resources is 30.98, outperforming DIP by a large margin (25.06). More importantly, it is
significantly higher than training on a single corruption (Denoising: 27.63, SR: 28.60 ). Due to the
space limit, detailed comparison results of other joint-training tasks are presented in the appendix A.

The core idea of image restoration based on INR is to guarantee the high quality of the represented
image through implicit restrictions rather than learning the direct mapping between corrupted images
and original images. This core process is independent of the corruption type. LINR is therefore not
limited to one image restoration task and will not be misled by the differences between corruptions.
More corrupted images will provide richer information to help LINR express high-quality images.
Our finding shows the feasibility of learning under multiple different corruptions with INR.

5 CONCLUSION

In this paper, we revisited INR and explored its applications in several image restoration tasks.
Under the same setting, it has been shown that the proposed LINR significantly outperforms other
alternative solutions across all the evaluated tasks, suggesting the effectiveness of such simple rep-
resentations in low-level tasks. Furthermore, we showcased the strong performance of LINR when
given more realistic multiple corruptions, outperforming its single-corruption counterparts as well as
other competitive solutions. We believe the findings derived from this study will potentially attract
research interest in this new direction.

Similar to DIP (Ulyanov et al., 2018), one possible limitation of LINR is that the denoising process
is easy to overfit. Therefore, the study of the stop criterion (e.g. (Jo et al., 2021)) could be a future
direction worth investigating.
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A APPENDIX

1. Table of Joint-training

2. An ablation study with different activation functions

3. Super-resolution results with different factors

4. Qualitative results on joint training

5. Qualitative results on inpainting

6. Qualitative results on super-resolution

7. Qualitative results on deblurring

8. Additional qualitative results and real noisy image denoising

A.1 TABLE OF JOINT-TRAINING

Here, We show the results of the combination of super-resolution and denoising in table 5, denois-
ing and inpainting in table 6, and super-resolution and inpainting in table 7. In these settings, the
performance of LINR is significantly better than its counterpart.

Furthermore, in table 8, table 9 and table 10, we compare joint training and training on only one
corruption. It can be seen that joint training achieves significantly better performance than training
on a single corruption across all three tasks, suggesting the effectiveness of the LINR.

For images containing noise in all joint-training experiments, the training weight is set to 0.1. This
aims to reduce the misleading effect of this type of corruption. For all other images, the weight is 1.

Table 5: The restoring results of joint training on noisy and low-resolution images.

Images DIP (Ulyanov et al., 2018) LINR

Baby 25.96/0.823 31.80/0.927
Bird 25.74/0.804 33.28/0.962
Butterfly 23.32/0.873 28.89/0.950
Head 26.63/0.772 30.07/0.864
Woman 23.63/0.833 30.86/0.955
Average 25.06/0.821 30.98/0.932
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Table 6: The restoring results of joint training on noisy and random masked (inpainting) images.

Images DIP (Ulyanov et al., 2018) LINR

Kate 25.93/0.893 33.41/0.964
F16 25.52/0.871 31.08/0.942
Peppers 25.01/0.825 30.62/0.891
House 28.29/0.890 29.00/0.843
Baboon 19.47/0.502 24.05/0.813
Lena 26.78/0.852 31.49/0.919
k01 22.03/0.624 25.71/0.807
k02 28.10/0.838 29.66/0.871
k03 27.48/0.869 30.98/0.914
k12 27.55/0.857 30.55/0.896
Average 25.62/0.802 29.65/0.886

Table 7: The restoring results of joint training on low-resolution and random masked (inpainting)
images.

Images DIP (Ulyanov et al., 2018) LINR

Baby 25.83/0.821 31.57/0.924
Bird 25.02/0.797 32.58/0.962
Butterfly 23.14/0.869 26.36/0.934
Head 26.30/0.766 29.71/0.861
Woman 24.33/0.847 29.47/0.948
Average 24.92/0.820 29.94/0.926

Table 8: The LINR joint results where both noisy and low-resolution images are used as input and
the LINR restoring results where only one of them is used.

Images Denoising SR Together

Baby 30.58/0.915 31.20/0.921 31.80/0.927
Parrot 27.14/0.796 30.48/0.944 33.28/0.962
Butterfly 24.82/0.821 24.29/0.898 28.89/0.950
Head 27.36/0.765 29.58/0.854 30.07/0.864
Women 28.24/0.868 27.44/0.924 30.86/0.955
Average 27.63/0.833 28.60/0.908 30.98/0.932
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Table 9: The LINR joint training results where both noisy and random masked (inpainting) images
are used as input and the LINR restoring results where only one of them is used.

Images Denoising Inpainting Together

Kate 32.00/0.951 31.78/0.956 33.41/0.964
F16 30.36/0.916 26.00/0.901 31.08/0.942
Pepper 29.46/0.860 27.30/0.879 30.62/0.891
House 23.10/0.580 26.29/0.862 29.00/0.843
Baboon 23.67/0.794 17.43/0.508 24.05/0.813
Lena 30.27/0.896 27.84/0.887 31.49/0.919
k01 25.99/0.818 19.91/0.607 25.71/0.807
k02 29.66/0.866 28.31/0.857 29.66/0.871
k03 30.40/0.903 29.02/0.902 30.98/0.914
k12 30.34/0.892 28.34/0.880 30.55/0.896
Average 28.53/0.848 26.22/0.824 29.65/0.886

Table 10: The LINR joint results where both low-resolution and random masked (inpainting) images
are used as input and the LINR restoring results where only one of them is used.

Images Inpainting SR Together

Baby 29.27/0.903 31.20/0.921 31.57/0.924
Parrot 28.21/0.922 30.48/0.944 32.58/0.962
Butterfly 21.05/0.853 24.29/0.898 26.36/0.934
Head 26.39/0.775 29.58/0.854 29.71/0.861
Women 24.41/0.892 27.44/0.924 29.47/0.948
Average 25.87/0.869 28.60/0.908 29.94/0.926
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A.2 AN ABLATION STUDY WITH DIFFERENT ACTIVATION FUNCTIONS

Our work is based on SIREN (Sitzmann et al., 2020), which uses sine as the activation function. We
also replace it with other activation functions for super-resolution tasks as an ablation study here.
We have tried Tanh, Sigmoid, ReLU, etc. We have also tried using positional encoding with ReLU,
like what is used in NeRF (Mildenhall et al., 2021). The result is shown in table 11. With other
activation functions, INR performed poorly on SR with the same number of training iterations(500).
SIREN can represent high-quality images in a very short time, whereas the other activation functions
can not. If given more training iterations, the performance of ReLU-PE can increase significantly
(with an average PSNR of 26.23 on Set5 after 2000 iterations), but is still much worse than the result
of SIREN (because ReLU cannot model higher-order derivatives and also lack the ability to extract
enough global information (Sitzmann et al., 2020).) However, it is significantly better than the result
of Nearest (24.50), which shows that with other activation functions, INR also has the capacity to
restore high-quality images.

Table 11: Super-resolution results of INR on Set5 with different activation functions.

Sigmoid Tanh ReLU SeLU ReLU-PE Sine (SIREN/LINR)

Set5 14.48/0.520 15.29/0.520 19.94/0.643 18.18/0.590 24.29/0.742 28.60/0.908

A.3 SUPER-RESOLUTION RESULTS WITH DIFFERENT FACTORS

Table 12: Super-resolution results (PSNR) on Set5 with factor = 8.

Bicubic Nearest DIP (Ulyanov et al., 2018) LINR

Baby 26.14 24.03 24.53 27.32
Bird 23.30 21.48 22.30 24.07
Butterfly 16.85 15.67 18.16 18.66
Head 26.99 25.50 25.18 27.48
Woman 21.25 19.60 21.09 22.43
Average 22.91 21.26 22.25 23.99

Table 13: Super-resolution results (PSNR) on Set5 with factor = 2.

Bicubic Nearest DIP (Ulyanov et al., 2018) LINR

Baby 36.02 32.64 26.63 32.87
Bird 35.56 30.53 26.15 36.86
Butterfly 26.59 23.43 24.63 28.82
Head 31.67 30.54 27.18 31.08
Woman 31.34 27.75 25.56 32.75
Average 32.24 28.98 26.03 32.48
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               Original                                    Bicubic                                  Nearest                                     DIP                                       LINR    

Figure 4: Super-resolution results on Set5 with factor = 2.
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               Original                                    Bicubic                                   Nearest                                      DIP                                       LINR    

Figure 5: Super-resolution results on Set5 with factor = 8.
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A.4 QUALITATIVE RESULTS ON JOINT TRAINING

                  Original                                 SR-LINR                           Denoising-LINR                       Together-DIP                         Together-LINR    

Figure 6: The joint results on LINR and DIP where both noisy and low-resolution images are used
as input and the LINR restoring results where only one of them is used.
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               Original                                 SR-LINR                          Inpainting-LINR                      Together-DIP                        Together-LINR    

Figure 7: The joint results on LINR and DIP where both low-resolution and random masked (in-
painting) images are used and the LINR restoring results where only one of them is used.
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Original                                 Inpainting-LINR                          Denoising-LINR                            Together-DIP                              Together-LINR    

Figure 8: The joint results on LINR and DIP where both noisy and random masked (inpainting)
images are used as input and the LINR restoring results where only one of them is used.
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A.5 QUALITATIVE RESULTS ON INPAINTING

           Original                                 Masked                                     DIP                                         S2S                                       LINR    

Figure 9: Visual results on random masked inpainting with sparsity = 0.1. Even if the mask obscures
most of the pixel, LINR can still produce very high-quality results.
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A.6 QUALITATIVE RESULTS ON SUPER-RESOLUTION

Figure 10: Qualitative results on SR with factor = 4. Compared to other methods, LINR results are
clearer and contain more details with limited training resources.
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A.7 QUALITATIVE RESULTS ON DEBLURRING

      Original                                  Blurred                                       DIP                                    DeepRED                                  LINR

Figure 11: Qualitative results on Gaussian blurred images. We can see that the edges of the LINR are
more significant and better recovered.
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A.8 ADDITIONAL QUALITATIVE RESULTS AND REAL NOISY IMAGE DENOISING

Original                                   Noisy                                      DIP                                    S2S                                       LINR  

Figure 12: Qualitative results on denoising with σ = 25. LINR’s denoise results contain more
detailed information than other methods.
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LINR also works well on real-world noise. We tested the LINR on PolyU (Xu et al., 2018) real noisy
images dataset. Due to the weak noise, we increased the training iteration for all methods to 1000.
The result is shown in table 14 and fig. 13, from which we can see that the proposed LINR performs
better than other methods. In the experiment, we additionally used the exponential sliding window
to average the result on DIP, as mentioned in their original paper (Ulyanov et al., 2018), because,
without this, DIP denoised images even perform worse (lower PSNR) than the original noisy images.

             Clean                                   Noisy                                      DIP                                        S2S                                      LINR  

Figure 13: Qualitative results on PolyU real-world noise dataset.

Table 14: Average denoising performance (PSNR/SSIM) on real-world noisy images (PolyU).

Images DIP (Ulyanov et al., 2018) S2S (Quan et al., 2020) LINR

PolyU 36.07/0.968 32.42/0.954 37.12/0.979
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