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Abstract Stereo cameras are now commonly available on
cars and mobile phones. However, the captured images may
suffer from low image quality under noisy conditions, pro-
ducing inaccurate disparity. In this paper, we aim at jointly
restoring a clean image pair and estimating the correspond-
ing disparity. To this end, we propose a new joint frame-
work that iteratively optimizes these two different tasks in a
multiscale fashion. First, structure information between the
stereo pair is utilized to denoise the images using a non-local
means strategy. Second, a new noise-tolerant cost function is
proposed for noisy stereo matching. These two terms are in-
tegrated into a multiscale framework in which cross-scale
information is leveraged to further improve both denoising
and stereo matching. Extensive experiments on datasets cap-
tured from indoor, outdoor, and low-light conditions show
that the proposed method achieves superior performance
than the state-of-the-art image denoising and disparity esti-
mation methods. While it outperforms multi-image denois-
ing methods by about 2dB on average, it achieves a 50% er-
ror reduction over radiometric-change-robust stereo match-
ing on the challenging KITTI dataset.
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(a) Noisy left view (b) Denoised left view

(c) Traditional disparity (d) Proposed disparity

Fig. 1 Given (a) a pair of noisy stereo images, (c) traditional dispar-
ity methods typically fail in noisy conditions. The proposed method
jointly estimates (b) the denoised images and (d) the disparity map.
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1 Introduction

Although there has been a significant progress on digital
imaging technologies in the last decade, the captured im-
ages may still suffer from noise corruption due to the prop-
erties of the camera sensors, especially for the low power
CMOS image sensors [15]. Image denoising is one of the
most important problems in vision-related works and has
been studied for decades. Although a remarkable perfor-
mance has been achieved by existing methods, most of them
focus on single image denoising. Due to the limited infor-
mation that we can obtain from a single input image, even
with a sophisticated denoising algorithm may still fail to
handle all challenging scenarios (fine structure, low-light,
etc.). On the other hand, consumer-level stereo cameras are
becoming popularly available on cars and mobile phones,
which also suffer from the noise corruption problem. Hence,
if images captured by these cameras are used for stereo
depth estimation, there may be large disparity errors. Un-
fortunately, conventional stereo methods do not work well
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in noisy conditions, as shown in Fig. 1(c), and works that
consider noisy stereo matching are limited. In this paper, we
attempt to address these two problems. Given a pair of stereo
images captured in noisy conditions (Fig. 1(a)), we propose
a joint framework to iteratively optimize image denoising
(Fig. 1(b)) and stereo matching (Fig. 1(d)).

The proposed method leverages the external information
brought by the stereo image pair and the internal informa-
tion extracted from across different scales of the image pair
for denoising and disparity estimation. First, inspired by the
non-local means method [3], which denoises an image by
grouping similar patches within it, we group similar patches
from both input stereo images and across different scales
of the images so as to strengthen the matching confidence
for image denoising. Second, we propose a noise-tolerant
matching cost for disparity estimation. The denoised image
pair is used to update the data cost and improve the accuracy
of the estimated disparity. These two tasks (image denoising
and disparity estimation) are iteratively optimized in a mul-
tiscale framework. The effectiveness of the proposed frame-
work is validated by extensive experimental evaluations. Re-
sults show that the proposed method outperforms the state-
of-the-art image denoising methods and disparity estima-
tion methods, quantitatively and qualitatively. The proposed
method achieves better performance than the state-of-the-art
multi-image denoising methods by about 2dB and the con-
ventional stereo matching methods under the radiometric-
change condition by about 50%. In addition, we demonstrate
other applications of our framework, including image refo-
cusing and view synthesis under noisy conditions.

The main contributions of this paper include:

– We propose a new similarity measurement, which takes
advantages of stereo structure information and principal
component analysis (SS-PCA), for noisy stereo patch
grouping.

– We propose a matching cost that integrates informative
edge and subspace information (PCIE) for noisy stereo
matching.

– We propose a multiscale framework to jointly denoise
images and estimate disparity, by introducing “needle
group” and cross-scale stereo matching.

The rest of the paper is organized as follows. We first
summarize related works on image denoising and stereo
matching in Section 2. We then present our joint framework
in Section 3 and experimental results in Section 4. Finally,
we discuss depth-aware image processing applications in
Section 5 and briefly conclude the paper in Section 6.

2 Related Work

As a comprehensive review of existing works on image de-
noising and stereo matching is beyond the scope of this pa-

per, we only discuss closest related works to the proposed
method on two main aspects: (1) non-single image denois-
ing, i.e., denoising with external information or using multi-
ple images, and (2) stereo matching in noisy conditions.

2.1 Non-single Image Denoising

Image denoising is an ill-posed problem in computer vision
and image processing, and has been extensively studied for
decades. The aim of image denoising is to recover a clean
image from a noisy one. Generally, image denoising tech-
niques can be categorized into single image based methods
and external prior based methods. We refer the readers to
[4] and [41] for a review of single image denoising. The ma-
jor problem of single image based methods is that they have
almost reached their bound [25]. As a consequence, a lot of
methods proposed in recent years rely on additional infor-
mation beyond the noisy image itself [5,47,57,7,29,49,50,
34,8,28,6,44]. These external prior based methods involve
external learning or multiple input images, which share sim-
ilar objectives to the proposed method.

External Learning Based Denoising: It has been shown
that the theoretical minimum mean square error (MSE) of
denoising can be achieved when using a large enough ex-
ternal dataset [25,26]. The expected patch log likelihood
(EPLL) method [57] outperforms other generic prior meth-
ods, by training a Gaussian Mixture prior using over 50,000
patches sampled from the external training set, while the
patch group based prior denoising (PGPD) method [47]
shows a better grouping performance, by learning nonlo-
cal self-similarity (NSS) using millions of external patch
groups extracted from clean images. In additional to train-
ing on generic datasets, specific datasets are also used for
application-oriented denoising. Targeted image denoising
(TID) [29] uses a targeted external database (text images,
human faces, etc.) to learn an optimal filter for denoising,
while [49,50] apply image retrieval to construct the targeted
database and combine it with the internal information for
denoising. Other methods that combine internal and exter-
nal information for denoising include [34,8,28]. In recent
years, neural networks are also used for image denoising by
training on a huge external dataset [6,44].

Multiple Image Denoising: In [5], the original NLM is
extended to denoise video sequence by treating the video
as a union of multiple images. In [31], the state-of-the-art
single image denoising method BM3D [9] is extended into
4D space (called BM4D) to deal with volumetric data like
MRI images. In [14], an adaptive spatial-spectral dictionary
learning method is proposed for hyperspectral image (HSI)
denoising. It is considered as multiple image denoising, as
each band is a separate image. In [12], a low-rank tensor
approximation method is proposed to denoise multi-frame
(usually dozens of frames) data like multispectral images
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or MRIs. In [22], a total of 124 images of the same scene
are captured to denoise a specific mountain view. Some spe-
cially designed input [21,42], such as a near-infrared image
or dark-flashed image, is also used for denoising in specific
scenarios. TID [29], which is proposed for a targeted ex-
ternal dataset, also shows to be able to denoise multiview
inputs. In [55,30], correspondences computed from multi-
ple views (up to 25) are used for denoising. They first com-
pute the correspondences between the target view and other
views. Based on the correspondences, other views can be
considered for denoising the target view. The similar patches
are selected according to the initial correspondences and the
Euclidean distance. However, it is difficult to estimate cor-
respondences in noisy situations, and easily causes many
outliers, which seriously affect similar patch grouping. In
addition, only using the Euclidean distance to measure the
similarity is not robust for patch selection (see Fig. 2).

When denoising a video sequence, optical flow can be
used to gather information across nearby frames. Methods
like [36,27] restore a noise-free video by motion estimated
from the optical flow. They use several frames in the forward
and backward directions to get patches for denoising and
have achieved good performance. [27] performs denoising
with 11 consecutive frames, and then combines the denoised
pixels at each frame to get the denoised result of the target
pixel in the current frame. However, the supporting patches
are searched only based on inner-frame similarity and de-
noising is performed separately on each frame. Hence, it
does not take full advantage of the multi-frame property.
In addition, the optical flow is computed separately before
denoising the noisy sequence. [36] proposes a variational
formulation that simultaneously solves optical flow and se-
quence restoration. [36] modifies an optical flow algorithm
by adding a fidelity term to penalize the deviation from the
given noisy sequence. However, the similarity is measured
by L1 and L2 metrics on the original data, which is shown
to be not accurate as in Fig. 2. A large number of iterations
(600) is also needed in each optical flow. Both above meth-
ods require many frames as support.

Summary: Most of the above non-single image denois-
ing methods show excellent results and outperform the sin-
gle image methods. While non-single image denoising can
be considered as a current trend, these existing methods re-
quire either an external training set of clean images or a spe-
cially designed multiple image input. In contrast, the pro-
posed method is only based on two noisy input images.

2.2 Noisy Stereo Matching

Stereo matching is another important problem in computer
vision. It aims to find dense correspondences between two
input views captured from the same scene but at different
viewpoints [39]. The output of this process is a disparity

map, which represents the depth information of the scene
and is important to many computer vision applications like
robotics and view synthesis. Almost all of the stereo match-
ing algorithms rely on the intensity-consistency assumption,
i.e., assuming that two corresponding points in the left and
right views have the same intensity. However, in real scenes,
a captured stereo pair may easy be corrupted by noise [1],
and very few works consider this practical but difficult noisy
stereo matching problem.

There have been studies on how to handle radiomet-
ric changes in different views [20,2,19,51,18,17,10,23,46,
24]. In [20], an evaluation of different cost functions on
various radiometric changes is presented for stereo match-
ing, including Absolute Difference (AD), Birchfield and
Tomasi (BT)[2], BT with mean filtering, BT with Lapla-
cian of Gaussian (LOG) [19], Rank and Census transform
[51], Normalized Cross-Correlation (NCC), and Hierarchi-
cal Mutual Information (HMI) [18]. It shows that HMI
is the best performer to noisy situation. After [20], re-
search on radiometric changes for stereo matching emerges.
Based on NCC, [17] proposes an adaptive normalized cross-
correlation (ANCC) cost measure, which is proved to be ro-
bust to lighting and illumination changes. In [46], a mea-
sure robust to affine illumination changes is proposed. Other
methods [10,23] taking advantages of the gradient informa-
tion are also shown to be effective on radiometric changes.
An adaptively weighted descriptor [24] that combines image
content attributes, including gradient information, is pro-
posed to handle images with radiometric changes. However,
all of the aforementioned methods focus on radiometric (il-
lumination or exposure) changes, in which the gradient in-
formation or other structure information can be used for pre-
diction even though image intensity is not consistent be-
tween the two views. In contrast, the gradient information
for an image pair corrupted by noise is not reliable.

To the best of our knowledge, there are no existing meth-
ods designed specifically for noisy stereo matching except
[16]. In [16], a new data cost combining the non-local means
and perceptually modified Hausdorff distance (PMHD) [37]
is proposed to generate the disparity map. A global opti-
mization is used for stereo matching. However, its perfor-
mance drops at high noise levels and for outdoor scenes
(Section 4). Instead of directly extending NLM to two views
as in [16], we propose a new patch grouping strategy lever-
aging the structure information between two views and mea-
suring the similarity in a PCA-optimized dimension. Our
evaluations show that the proposed strategy is more robust
than directly using L2-norm [16]. In addition, the proposed
method utilizes the cross-scale information to increase the
accuracy of patch grouping for denoising and expands the
support regions for disparity estimation.
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Fig. 2 (a), (b) and (c) are three patches extracted from an image. The
patches in the first row are from the clean version of the image, while
those in the second row are from the noisy version. In each row, patches
with a green border are considered as similar based on Euclidean dis-
tance while the patch with red border is dissimilar to the others.

2.3 Non-local Means Filtering

As the proposed framework is mainly inspired by the idea
of non-local means (NLM) filtering, we briefly review the
non-local means algorithms [3] here. Given a clean im-
age I, the noisy version of I at pixel p can be defined as:
In(p) = I(p)+n(p), where n(p) is the noise at pixel p. In the
denoising problem, the actual observation is the noisy ver-
sion In(p), while the true clean image pixel I(p) is not avail-
able in practice. As the noise distribution is supposed to have
a zero mean, the average of a sufficiently large number of
observations should approach to the clean value. NLM is de-
signed based on this idea by weighted averaging all the pix-
els non-locally. In its basic form, the weight for averaging is
defined as the similarity between the neighborhoods of two
pixels. Let Ni denotes the neighborhood centered at pixel i
with a window size of r× r, and the Euclidean distance is
used to calculate the similarity between two neighborhoods
of pixel i and j as

∥∥In(Ni)− In(N j)
∥∥2

2. Then, the NLM algo-
rithm defines the estimate/denoised value for pixel i as:

Î(i) = ∑
j∈S

1
Z(i)

e−
‖In(Ni)−In(Nj)‖2

2
h2 · In( j), (1)

where S is the set of pixels used for averaging. In the origi-
nal NLM algorithm, S covers the whole image, i.e., a global
averaging, but for computational efficiency, S is usually set
to a fixed-size search window centered at pixel i. h is an av-
eraging parameter controlling the degree of averaging. Z(i)
is the normalizing term summing up all the weights in S.

In general, the NLM algorithm can perform very well
due to the redundancy in images. However, the core step,
which is also the most difficult problem, of NLM is to find
similar patches within the search window. While the Eu-
clidean distance has been shown to be effective in measuring
the similarity of two patches in a noise-free situation, it may
not well capture the true similarity for noisy images. Fig. 2
shows an example. In the first row, patch (a) is more similar

to patch (c) than patch (b). The Euclidean distances for the
clean version (first row) are 1780 between (a) and (b), and
1713 between (a) and (c). For noisy version (second row),
the Euclidean distances are 3585 between (a) and (b), and
3595 between (a) and (c). This shows that the results for the
clean version and the noisy version are contradictory.

3 Proposed Method

In this section, we first give an overview of the proposed
method, and then discuss the ideal performance in the noisy
stereo situation. Finally, we describe the framework for joint
image denoising and disparity estimation.

3.1 Overview

Fig. 3 shows the proposed framework. In order to utilize the
cross-scale information, a multiscale pyramid pair is con-
structed from the noisy input stereo pair. At each scale, we
take full advantage of the stereo information for denoising.
The structure information among the stereo images is lever-
aged to group similar patches from two views, and the simi-
larity is measured in a low-dimension through PCA projec-
tion. The computed stereo structure and PCAs are combined
as SS-PCA for denoising (see Section 3.3).

We then construct a cost volume for each scale based on
a new matching cost, referred to as PCIE (principal com-
ponents of intensity and informative edges). Both the infor-
mative edges and the principal components of patch inten-
sity are designed to be robust to noise and intensity changes
(see Section 3.4). The disparity is estimated by aggregating
the intra-scale and cross-scale costs. Meanwhile, denoising
is also performed on both intra-scale and cross-scale only
at the finest scale. In addition to the patches selected by SS-
PCA, a “needle-group” is added for cross-scale patch group-
ing (see Section 3.5). The cross-scale operations improve the
quality of both denoising and disparity estimation.

After that, we have the initial result of the denoised im-
ages and disparity map. As our SS-PCA depends on the
disparity map, and the denoised image pair is beneficial to
patch grouping, we feed the denoised image pair and dis-
parity map back to the framework to iteratively improve the
quality of both denoising and stereo matching.

3.2 Ideal Method for Stereo Scenario

Before discussing the proposed method in detail, we present
an ideal method that gives the ideal performance in a noisy
stereo condition. The ideal denoiser directly uses the clean
image for similar patch selection, while the ideal stereo
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Fig. 3 Overview of the proposed multiscale joint framework.

matcher uses the ground truth disparity map as a guidance
on the clean stereo images to obtain the disparity map.

Unlike single image denoising, a stereo image pair pro-
vides an additional view for denoising, and the patch selec-
tion process can be extended to two views. Since we process
the left and right views in a similar way, the following dis-
cussion will be based on the left image. Given a stereo im-
age pair IL and IR, we denote the neighborhood (patch) sur-
rounding pixel i as Ni, and j as the center pixel of N j. If Ni is
similar to N j in the left image, their corresponding patches
Ni−di and N j−d j in the right image should also be similar to
each other, where di represents the disparity at pixel i. Based
on this assumption, the similarity measurement for patch se-
lection is defined as:∥∥IL(Ni)− IL(N j)

∥∥2
2 +

∥∥∥IR(Ni−di)− IR(N j−d j)
∥∥∥2

2
, (2)

where di and d j are the ground truth disparities at pixels i
and j, respectively. Applying this similarity measurement in
the NLM algorithm, we get the ideal denoiser. We refer to
this as the “ideal” case because the image pair used for sim-
ilar patch selection are clean images, and the disparity used
in Eq. 2 is the ground truth disparity, which is not available
in real applications. On the other hand, the matching cost
for stereo matching is usually aggregated by a filtering tech-
nique, e.g., BoxFilter (Fig. 4 (g-h)). Ideally, the matching
cost should be aggregated on the same ground truth dispar-
ity. Thus, given the ground truth disparity as a guidance,
the best performance of a specific matching cost can be
achieved. It should be noted that only the patch grouping is
performed on the clean images and the denoising process is
still performed on the noisy images, while the ground truth
disparity is only used as a guidance. Example results of the
ideal method are shown in Fig. 4. The ideal denoiser (Fig.
4 (e)) performs much better than the state-of-the-art meth-
ods. Note that noise can significantly influence the matching
result, even for the ideal case.

The ideal method described above is clearly impossible
to achieve in practice. However, it serves as a benchmark
and presents a direction for improvement. It also demon-
strates that a good performance can be achieved once a

(a) Clean image (b) Noisy image 
(PSNR=20.21)

(c) NLM 
(PSNR=26.52)

(d) BM3D 
(PSNR=28.07)

(e) Ideal (denoise)
(PSNR=29.86)

(f) Ground truth 
disparity

(j) Ideal (disp) on clean 
(error=2.68%)

(i) Ideal (disp) on noisy 
(error=7.23%)

(h) BoxFilter clean 
(error=25.25%)

(g) BoxFilter noisy 
(error=68.65%)

Fig. 4 Sample results of stereo image denoising (first row) and dis-
parity estimation (second row). Results aggregated by the BoxFilter
are also included for comparison (g-h). Red regions indicate errors.
(e) shows the ideal performance of stereo image denoising, while (i-j)
show the ideal disparity estimation performances on noisy and clean
image pair.

good similarity measurement is available for denoising, and
a cleaner image pair as well as a good cost function are used
for disparity estimation.

3.3 Stereo Structure PCA for Denoising

3.3.1 Patch Grouping

In practice, disparity calculated from a noisy image pair is
not accurate, as shown in Fig. 4. Hence, the ideal method
cannot be directly used here. As shown in Fig. 5(b), both the
reference patch (red box) and the neighbor patches (white
boxes) in the left view are mapped to the right view ac-
cording to the initial disparity (shown in Fig. 5(a)). This
is referred to as “all-map”. Some denoising methods[55,
30] based on multiple images use this kind of mapping to
search for similar patches. They use the similarity measure-
ment strategy in Eq. 2 and are based only on the initial es-
timated disparity map. However, because of a large number
of outliers in the initial disparity, many neighbor patches are
mapped to wrong locations. As the aim of introducing an-
other view is to increase the patch grouping accuracy, such
incorrect mappings produce worse grouping. To address this
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(b)

(c)

(a)

Fig. 5 Patch matching on stereo images. (a) the initial disparity map.
(b) the reference patch (red box) and the neighbor patches (white
boxes) on the left view are mapped to the right view according to (a).
(c) the patch pattern on the left view is mapped to the right view.

problem, we propose a new patch grouping criterion based
on structure correlation between noisy stereo images.

We first estimate an initial disparity map to build a weak
relationship between the two stereo images. For simplicity
and in order to validate the effectiveness of the proposed
scheme, the initial disparity (Fig. 5(a)) is estimated by AD
following a BoxFilter aggregation with no refinement. We
then take a patch PL

i centered at pixel i in left view as a ref-
erence patch and its neighbor patches as PL

j . When searching
for similar patches in both left and right views, we map the
reference patch to the right view according to the initial dis-
parity and get the mapped reference patch PR

i−d . However,
unlike the ideal denoiser, we map the “pattern” of the ref-
erence patch to the right view. Here, the “pattern” refers
to the spatial relationship between the reference patch and
the neighbor patches. During the searching process, once a
neighbor patch is visited in the left image, its relationship
with the reference patch is kept in the right image. As a re-
sult, the spatial structure of the neighbor patches with the
reference patch in the left view is maintained, and it is du-
plicated to the right view. Fig. 5(c) shows an example. The
similarity between two patches is then defined as:∥∥PL

i −PL
j
∥∥2

2 +
∥∥PR

i−d−PR
js
∥∥2

2 , (3)

where PR
js denotes the patch mapped to the right view us-

ing the structure correlation derived from the left view. This
idea is similar to patch based NLM, which is more robust
than the pixel based one [4]. The pattern in Fig. 5(c) can be

BM
+

clean

BM
+

noisy

“all-map”
+

noisy

proposed
+

noisy

Fig. 6 Comparison of different strategies for selecting similar patches
from two stereo pairs (first and second columns). 20 most similar
neighbor patches (green boxes) are selected for each reference patch
(red box). “all-map” is based on Fig. 5(b), while “proposed” is based
on Fig. 5(c). Better view on a color screen.

considered as a “macro patch”, leveraging structure infor-
mation for robustness. As the stereo images are rectified and
the cameras are calibrated in advance, the geometry between
the two cameras has been taken into account when mapping
between the two views. Fig. 6 compares the “all-map” and
“pattern-map” strategies. The block matching (BM) result
on clean images is included as a benchmark. We can see
the patches selected by “all-map” are as random as BM on
noisy images, while the proposed structure based mapping
has a performance closer to the benchmark.

3.3.2 Patch Similarity

Although the problem caused by low-quality disparity is
handled by the stereo structure strategy, the distance be-
tween two patches determined by the Euclidean distance
(as in [55,30]) is not robust for noisy images, as shown
in Fig. 2. Here, we propose a principal component analysis
(PCA) based strategy to improve the performance of patch
similarity measurement for stereo denoising.

PCA is a traditional decorrelation strategy widely used
in dimensionality reduction. It has also been used in image
denoising [35,54,11]. When projecting the original data to
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a PCA domain, the signal (clean information) and noise can
be separated. In addition, by preserving the most significant
principal components, noise can be eliminated to some ex-
tent. Unlike conventional PCA methods that recover a de-
noised patch by back-projecting from a lower dimension, in
this paper, we simply utilize the projection coefficients in a
lower dimension. As the clean information can be well rep-
resented in the lower dimension, these coefficients are used
to describe patch similarity. Thus, we replace the Euclidean
distance on the noisy image patch by the distance between
two coefficient vectors of size C (C � r2, where C is the
number of principal components and r2 is the patch size).
The similarity measurement in Eq. 3 becomes:∥∥η(PL

i )−η(PL
j )
∥∥2

2 +
∥∥η(PR

i−d)−η(PR
js)
∥∥2

2 , (4)

where η(·) is a projection function to get the coefficients
corresponding to the patch in a lower dimension. In addition
to using the new proposed similarity measurement (Eq. 4)
for similar patch grouping, we also use it to determine the
weights for patch averaging. In the conventional NLM algo-

rithm, the weight is defined as: e−‖Pi−Pj‖2
2/h2

.
This weight is dominated by the Euclidean distance on

noisy images. In the proposed algorithm, the weight be-
tween pixels i and j is set to:

w(i, j) = e−
sim(Pi ,Pj)

h2

= e−
‖η(PL

i )−η(PL
j )‖2

2
+‖η(PR

i−d )−η(PR
js)‖2

2
h2 . (5)

By using the new similarity measurement in Eq. 4 and
the new weight in Eq. 5, patch matching accuracy and de-
noising performance are both improved, as shown in Fig. 7.

In [11], the PCA-based methods are divided into three
classes according to the way that the dataset is constructed:
global, hierarchical, and local. Global methods are the most
efficient ones, while local methods have the highest accu-
racy. In this paper, we combine the global and local PCAs to
leverage both their advantages. Specifically, in the first stage
of patch grouping, we use global PCA, while in the follow-
ing weighted patch averaging stage, we use local PCA. Here,
“global” means that the covariance matrix is constructed
from all the patches in the image pair, and only needs to
be calculated once in advance. “Local” means that for each
of the selected patch groups, a covariance matrix is con-
structed, and each member patch of this group is projected
based on this matrix.

3.4 Noise-tolerant Cost for Stereo Matching

Most existing disparity estimation algorithms are imple-
mented based on the assumption that the intensity of the
corresponding pixels is in the left and right views should

(a)

(b) (c)
Fig. 7 Improvement by adding the PCA strategy to the similarity
measurement, i.e., Eq. 4. Other settings are same as those in Fig. 6.
(a) shows the patch matching results. (b) shows the denoised result
of using stereo structure as similarity measure, i.e., Eq. 3, with a
PSNR=26.69dB. (c) shows the result after adding the PCA, i.e., Eq. 4,
with a PSNR=27.15dB.

be consistent. However, this assumption is difficult to guar-
antee in practice as there are many factors affecting the
imaging process of the input images. Most works that han-
dle the intensity-inconsistent problem focus on illumination
changes between two views, while the noise-corrupted prob-
lem is not well studied. In fact, noise is more commonly ob-
served than illumination changes. As illustrated in Section
3.2, noise has a great impact on the disparity result, even in
the ideal case. To achieve a robust disparity result in noisy
situation, we propose a new matching cost combining the
intensity subspace information and edge similarity.

The matching cost in disparity estimation is also a func-
tion measuring the similarity between pixels/patches. Sim-
ilar to the patch grouping process described in Section 3.3,
we apply the idea of principal components here to reduce the
impact of noise for matching. The first term of the combined
matching cost is defined as:

CPCAD(x,d) =
∣∣η(PL

x )−η(PR
x−d)

∣∣ , (6)

where Px is a support window (patch) centered at pixel x.
PL and PR are image patches in the left and right noisy im-
ages, respectively. d is the disparity candidate value. η(·) is
the projection function. PCAD represents the absolute dif-
ference of principal components.

Besides PCAD, another important information for sim-
ilarity measurement in disparity estimation is edge simi-
larity, which has been proved to work well on radiometric
changes [20,23,10]. However, when corrupted by noise, the
raw edge information (gradient) is not robust. In [48], a cri-
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noisy image traditional gradient informative edge

Fig. 8 Effectiveness of the informative edge descriptor. While the tra-
ditional gradient detector fails and produces many spikes, the informa-
tive edge descriptor can detect the distinctive edges well.

terion describing informative edges is introduced for blur
kernel estimation. It is defined as:

iE(x) =

∣∣∣∣ ∑
y∈Px

∇I(y)
∣∣∣∣

∑
y∈Px

|∇I(y)|+0.5
, (7)

where ∇I(x) represents the gradient at pixel x, and 0.5 in the
denominator is to prevent producing a large iE response in
low-texture regions. With this informative edge descriptor,
the sum of signed gradients in the numerator exactly elimi-
nates the noise impact, while the sum of unsigned deriva-
tives in the denominator describes how strong the local
structure is. Thus, it is robust to noise. Fig. 8 demonstrates
the effectiveness of the informative edge descriptor. Hence,
we include this descriptor as the second term of our com-
bined matching cost. The informative edge descriptor is de-
fined as:

CIE(x,d) =
∣∣iE(xL)− iE(xR−d)

∣∣ . (8)

With the above two cost terms, the proposed matching
cost PCIE is defined as:

CPCIE(x,d) = αCPCAD(x,d)+(1−α)CIE(x,d), (9)

where α ∈ [0,1] is an adjustment parameter used to balance
the influence of the principal component term and the infor-
mative edge term. It should be noted that as the informative
edges lie in the range of [0,1], the principal component term
is also normalized to this range. Besides, as the principal
component coefficients have already been calculated in the
denoising part, the only additional computation is the infor-
mative edge. Fig. 9 demonstrates the effectiveness of PCIE.
The aggregation of the matching cost is done by BoxFilter
with no refinement.

In the previous denoising step, for each patch, we col-
lect a group of similar patches. While the Hausdorff distance
(HD) can be used to compare the similarity between each
pair of groups, a modified version, the Perceptually Mod-
ified Hausdorff Distance (PMHD) [37] for weighted HD
is more suitable to our problem as the weights are avail-
able. However, considering the computational complexity of
PMHD, we propose to use PCIE as our matching cost in this
paper.

(a) (b) (c)

Fig. 9 Effectiveness of the proposed matching cost, PCIE. (a) disparity
from matching cost AD on noisy images. (b) disparity from matching
cost PCIE on noisy images. (c) disparity from matching cost AD on
clean images. Red regions indicate matching errors larger than 1 pixel.

3.5 Multiscale Joint Stereo Denoising and Disparity
Estimation

Humans process visual information in a multiscale man-
ner (i.e., in both coarse and fine scales) [38,32]. This mul-
tiscale (or coarse-to-fine) bio-inspiration has been adopted
in many computer vision tasks. In image denoising, it has
been shown that it is possible to find “clean” versions of al-
most all the image patches in a noisy image from a coarser
scale [56]. Intuitively, an image looks “cleaner” from a dis-
tant perspective. For stereo matching, the information from
different scales is also leveraged in a cross-scale cost ag-
gregation method [53]. It has also been shown that a cross-
scale cost aggregation scheme can reduce the incorrect la-
bellings and produce a more accurate disparity map [43]. As
our work focus on noisy stereo images, we therefore apply
multiscale in our framework to jointly denoise the stereo im-
ages and estimate the corresponding disparity map.

We first downsample the left and right noisy images to
construct a multiscale pyramid pair. Assuming the scale ra-
tio is γ , the resolution at scale s is γs of the original im-
age. This process can be considered as a downsampling and
blurring operation performed in both horizontal and vertical
directions. Hence, the noise is reduced as the scale number
increases. However, the images are still noisy even in higher
scales. As such, we use the proposed SS-PCA denoising al-
gorithm (Section 3.3) to remove the noise in the left and
right view pyramids to produce a new denoised pyramid
pair.

At the finest scale, besides the cross-view (stereo) corre-
lation, another important information is the cross-scale rela-
tionship. Due to the existence of clean versions in a coarser
scale [56], we collect a group of patches across all scales
with the same patch size as in the finest scale and at the
same relative coordinates. Such a group is called a “needle”
group [56], as shown in the first row of Fig. 10. As there
exists a clean patch in the needle group, similar to the cross-
view grouping assumption (Eq. 2), we assume that if two
patches are similar to each other, their needle groups should
also be similar. The second row of Fig. 10 shows an exam-
ple to validate this assumption. NLM is used for denoising.
Results of with and without “needle grouping” are shown
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S=0
S=1

S=2 S=3 S=4
…

needle group

clean Noisy
(PSNR=20.28dB)

NLM w/o needle
(PSNR=26.97dB)

NLM w/ needle
(PSNR=27.99dB)

Fig. 10 Needle grouping. First row shows an example of a needle
group; second row shows the improvement by using needle grouping.

for comparison. We can see a clear improvement by using
needle grouping across scales.

In addition to the cross-view patch group (Eq. 4), for
each patch in the left view, we have another needle group.
The difference between different needle groups also acts as a
component of the similarity measurement. Hence, for patch
grouping at the finest scale, the similarity between patches
Pi and Pj becomes:∥∥∥η(PL

i )−η(PL
j )
∥∥∥2

2
+
∥∥∥η(PR

i−d)−η(PR
js)
∥∥∥2

2
+Ψ(PL

i ,P
L
j )+Ψ(PR

i−d ,P
R
js),

(10)

where Ψ(Pi,Pj) is the normalized difference between needle
groups Pi and Pj. For simplicity, the difference is depicted
by L2-norm. With noise degradation at coarser scales, the
proposed SS-PCA is shown to be effective in handling the
remaining noise. According to our experiment, adding the
needle group to each coarse scale does not contribute to the
final result but increases the complexity. Thus, cross-scale
denoising is performed only on the finest scale.

From the above denoised pyramids, a cost volume is
constructed for each scale, i.e., (V 0 ,V 1 , · · · ,V s) in Fig. 3.
Each cost volume is a cubic structure, in which each point
(x,y,d) represents the cost value of pixel (x,y) at disparity
d. As the initial denoised pyramid pair still contains residual
noise, the cost volume is computed using the proposed PCIE
matching cost. For these cost volumes at different scales, a
cross-scale aggregation strategy [53] is used to aggregate the
inter-scale and intra-scale costs. After the aggregation, a dis-
parity corresponding to the finest scale is estimated, and we
refer to it as the initial disparity map. Left-right consistency
check [39] is then applied between the left and right dispar-
ity maps to reduce the artifacts caused by occlusion.

At this point, we have a pair of initial denoised images
and an initially estimated disparity map for the finest scale
(i.e., original resolution). For the initial denoised images,
noise has been reduced to a large extent, while for the ini-
tial disparity map, the accuracy has also been improved. By

using these initial images, image patch grouping and aver-
aging can be further improved. As a result, the SS-PCA de-
noising algorithm can be performed in a more accurate way.
On the other hand, the disparity can also be updated. With
the stereo image pair becoming “cleaner” and disparity map
more accurate, this iterative process approaches to the ideal
algorithm mentioned in Section 3.2. Algorithm 1 summa-
rizes all the steps.

Algorithm 1 Multiscale Joint Denoising and Disparity Esti-
mation.
Input: Noisy image pair, IL

n and IR
n ;

Output: Denoised image pair, ÎLandÎR, estimated disparity map, D;
1: Construct multiscale pyramid with scaling factor γs;
2: Denoise each scale pair by SS-PCA (Section 3.3);
3: if not converge then
4: Calculate a cost volume for each scale using PCIE;
5: Aggregate cross-scale costs, and generate disparity map Ds;
6: Using stereo structure and needle to form patch group P;
7: Denoise each patch by P̂(i) = ∑ j∈P w(i, j) ·P(i);
8: end if
9: Denoise the whole image Î by P̂;

As the proposed method normally converges in 2-3 itera-
tions, we fix it to two iterations, which is similar to the strat-
egy of some “two-stage” methods [9,50]. Note that in our
implementation, each iteration utilizes the same pipeline, in-
stead of using different schemes, e.g., Wiener filtering. In the
first iteration, the disparity map for denoising at each scale
is estimated by AD + BoxFilter without any refinement. We
have also tried other methods (e.g., HMI [18]) for estimat-
ing the initial disparity. Although HMI can achieve a slightly
better initial disparity (3% error), the final result is similar to
that of using AD + BoxFitler (less than 0.01dB for denois-
ing and 0.1% for disparity estimation). Thus, for simplicity,
we use AD + BoxFilter in the initialization. Fig. 11 shows
the effectiveness of each step for denoising. We can see that
the performance of the proposed framework improves con-
tinuously with each step.

4 Experimental Results

In this section, we evaluate the proposed method qualita-
tively and quantitatively through a number of experiments.
As our work focuses on noisy stereo images, our experi-
ments are conducted based on two popular stereo datasets,
Middlebury [40] and KITTI [33]. The evaluation is divided
into two parts, the denoising performance and disparity es-
timation performance. The images are corrupted by white
Gaussian noise at noise levels: 25, 35, 45 and 55. In addi-
tion, we also report the performance on images corrupted by
real noise.



10 Jianbo Jiao1 et al.

12

14

16

18

20

22

24

26

28

30

n o i s y S S S S - P C A mu l t i s c a l e 2   i t e r a t i o n

Av
er

ag
e 

PS
N

R

σ=25 σ=35 σ=45 σ=55

nd

Fig. 11 Denoising performance of each step on the Middlebury
dataset.

4.1 Dataset

The Middlebury dataset is captured in indoor scenes with
various difficulties, e.g., low-texture and occlusion, that may
occur in real scenes, while the KITTI dataset is captured us-
ing a car equipped with a LiDAR sensor and color cameras
on challenging outdoor scenes, e.g., thin objects, shadows,
slant surfaces and specular reflections. Hence, the stereo im-
ages from Middlebury form our indoor test set, and data
from KITTI form our outdoor test set. Besides, as noise of-
ten appears in low-light conditions, we have also constructed
a test set consisting of low-light images, which are obtained
from the Middlebury and KITTI datasets. Fig. 12 shows ex-
ample images from these three test sets. For the indoor test
set, randomly selected images are denoted as i1, i2, . . . , i14
from top-left to bottom-right; for the outdoor test set, the
first frame of each scene in the training subset is selected
and denoted as o1,o2, . . . ,o200; for the low-light test set, the
images are denoted as l1, l2, . . . , l17 from top-left to bottom-
right. Section 4.5 discusses details of the images captured in
real-noise scenes.

4.2 Parameter Setting

In our experiments, the patch size r and the searching win-
dow size S are set to 7 and 19, respectively. The number of
similar patches for patch grouping between the left and right
views is set to 18. Similar to NLM [3], the averaging param-
eter h for the weights is set according to the noise level as
h = 6σ +14. The number of principal components in patch
grouping of SS-PCA is set to 3. The pyramid size s and the
scaling factor γ are set to 3 and 0.5, respectively. All the pa-
rameters are tuned on the Middlebury dataset and applied to
all three test sets.

Fig. 12 Evaluation test sets: the Middlebury indoor test set (blue), the
KITTI outdoor test set (red), and the low-light test set (green). Only
left view images are shown here.
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Fig. 13 Denoising performances w.r.t. different numbers of principal
components at two different noise levels.

The number of principal components C for SS-PCA is
set experimentally. The relationship between denoising per-
formance and the number of principal components C is il-
lustrated in Fig. 13. We show two noise levels (σ = 25,45)
based on the images from the Middlebury dataset. The de-
noising performance is from the proposed SS-PCA algo-
rithm and all other parameters are fixed. At the right end
of the figure, the dimensionality of the subspace of PCA is
equal to the total number of pixels in a patch, which means
that no PCA is performed. We can also see from the figure
that the best performance occurs at a relatively low dimen-
sion, around C = 3, and the performance decreases as C is
away from the point C = 3. Hence, we set the dimensional-
ity parameter C to 3. From the two curves in Fig. 13, we can
observe that the proposed method performs similarly under
different noise levels, demonstrating its robustness to noise
levels. Other parameters are also set experimentally.
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4.3 Evaluation on Denoising Performance

As the proposed method focuses on stereo scenarios, in eval-
uating the denoising performance, we mainly compare it to
the state-of-the-art non-single image denoising methods, in-
cluding the ideal stereo denoiser (Section 3.2), BM4D [31]
used for multi-image denoising, TID [29] for targeted exter-
nal database, and PMHD [16] for stereo images. Note that
the volumetric data of BM4D consists of the noisy image
pair, while one of the noisy images for TID acts as the sup-
porting database. In addition to the above non-single denois-
ing methods, as our algorithm is inspired by NLM [3], we
also compare it with NLM. Another single-image denoising
method BM3D [9] is also included, as it is considered as
the state-of-the-art single-image denoising method. PMHD
is based on our own implementation, and the other methods
are based on the authors’ codes.

Indoor: The comparison results are presented in Tables
1 and 2. From the tables, we can see that the ideal de-
noiser is the best performer in all cases, as expected. The
proposed method clearly outperforms NLM by over 3dB
at both low and high noise levels. It even outperforms the
state-of-the-art single image denoising method BM3D. The
specific designed multiple-image denoiser BM4D, TID and
PMHD perform not as good as the proposed method. Spe-
cially, TID [29] is reported to significantly outperform state-
of-the-art single image denoising methods. However, it was
based on the assumption that only one image was corrupted
by noise. When both views are corrupted by noise as in
our experiment, its performance is not as good. Compared
with the multi-image denoisers, the proposed method out-
performs them by 1.3dB to 3.8dB on average. This shows
that the proposed method is effective and robust to high
noise levels.

Fig. 14 shows a qualitative comparison of the above de-
noising methods. The denoising results of images i1 and i5
when noise level σ is 35 are presented. Selected regions
(red and green boxes) are magnified for comparison. As we
can see, when compared with other methods, the proposed
method reduces the noise significantly and preserves more
fine details. Specifically, in image i1, the proposed method
reconstructs the camera handle well, while other methods
either smooth it out or fail. The proposed method also per-
forms better on the edges of the statue and the characters
on the book spine. While for image i5, the proposed method
faithfully reconstructs the pattern on the background cloth,
as well as the crotch of the aloe. In summary, the proposed
method performs well in indoor scenes.

Outdoor: The KITTI outdoor dataset is more realistic
and challenging than the Middlebury indoor dataset, since
various factors in an outdoor environment could influence
the performance of denoising as mentioned in Section 4.1. In
Fig. 15(top), we compare the performances of both single-

image and multi-image denoising methods over a range of
noise levels defined in Section 4.1. Note that for the outdoor
KITTI dataset, the ground truth disparity is not a dense map.
To show the result of the ideal denoiser, we use the dispar-
ity computed from a learning based method [52] (on clean
images), which is considered as the state-of-the-art stereo
matching method that produces a low error on KITTI.

From Fig. 15(top), we observe that the proposed method
consistently outperforms all the other denoising methods,
except the ideal denoiser. Specifically, it outperforms BM3D
and BM4D on average by 1.09 dB and 1.83dB, respec-
tively, over the noise levels. As the noise level increases,
the proposed method performs even better compares with
other denoising methods. For example, when σ = 55, the
proposed method is 4.52dB better than NLM, and 1.67dB
better than BM3D. Fig. 14 shows some visual results. We
can see that the proposed method reconstructs the details
and edges well. In summary, this experiment shows that the
proposed method performs well in outdoor scenes.

Low-light: As images captured under low-light condi-
tions tend to be noisy, in this experiment, we compare the
proposed method with other state-of-the-art methods, by
adding noise of low and high levels (σ = 25,55) to the
original test set, as shown in Fig. 15(bottom). We can see
that under low-light conditions, the proposed method out-
performs other methods even more than under normal-light
conditions. For example, at σ = 25, it outperforms NLM and
PMHD by 4.04dB and 2.85dB, respectively. At σ = 55, it
even outperforms them by 6.1dB and 5.38dB, respectively.
Fig. 14 shows some examples for visual evaluation. Image
l17 is corrupted by noise at σ = 55, while l16 is at σ = 25.
From the visual results, even at a large noise, the proposed
method can still reconstruct the structure and details under
low-light conditions, e.g., the face of the doll and the traffic
lines on the road.

4.4 Evaluation on Disparity Estimation

To evaluate the quality of the estimated disparity map, error
percentage is the most commonly used criterion defined as:

Err(D) =
∑

N
i=1 (|D(i)−GT (i)|> δ )

N
, (11)

where D is the estimated disparity map and GT is the ground
truth. δ is an error threshold set to 1.0 and 3.0 for the Mid-
dlebury and KITTI datasets, respectively, by default. N is the
total number of pixels in the image. The summation in the
numerator is to sum up the number of pixels which disparity
errors exceed the error threshold.

In this paper, we use the error percentage to evaluate
the performance of the algorithms and all the regions in
the disparity map are taken into consideration. As our algo-
rithm focuses on the noisy scenario, we compare the pro-
posed method with some state-of-the-art stereo matching
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Table 1 Comparison of denoising performance (PSNR) with six other algorithms on the indoor test set, at σ = 25, 35.

σ 25 35
Image NLM BM3D BM4D TID PMHD Proposed Ideal NLM BM3D BM4D TID PMHD Proposed Ideal

i1 27.35 29.89 29.03 27.46 28.31 30.66 31.50 25.11 27.74 26.91 25.06 26.13 28.92 29.77
i2 27.89 29.53 28.49 27.63 28.56 30.13 31.33 26.18 27.92 26.90 25.31 26.99 28.49 29.94
i3 27.97 29.52 28.69 27.06 28.53 30.19 31.24 26.34 27.99 27.22 24.90 27.06 28.70 29.91
i4 26.52 28.07 27.10 26.09 27.22 28.73 29.86 24.89 26.58 25.71 24.24 25.80 27.37 28.71
i5 25.18 27.05 26.57 26.26 26.45 27.89 29.35 24.00 25.95 25.55 24.42 25.30 26.78 28.28
i6 28.25 30.43 29.67 27.76 29.32 30.99 32.45 27.51 29.24 28.66 25.68 28.12 29.61 31.12
i7 24.19 26.37 25.79 26.01 25.78 27.10 29.11 23.25 25.17 24.73 23.99 24.61 26.05 28.10
i8 28.71 31.42 30.05 25.45 29.75 31.38 32.75 26.45 29.71 28.45 23.94 28.04 29.75 31.13
i9 25.20 27.29 26.81 25.97 26.81 28.03 29.83 24.04 26.01 25.66 24.34 25.53 27.06 28.73

i10 27.15 29.32 28.60 25.99 28.42 29.85 31.20 24.89 27.89 27.10 24.35 26.90 28.62 29.77
i11 29.00 31.36 30.24 27.57 29.78 31.80 32.95 26.89 29.77 28.75 25.55 28.07 30.15 31.30
i12 27.52 29.68 29.11 27.13 28.73 30.33 31.63 25.98 28.43 27.89 25.05 27.38 29.11 30.39
i13 27.37 29.31 28.80 26.99 28.49 29.98 31.33 25.92 28.12 27.68 25.11 27.20 28.81 30.17
i14 27.10 29.17 28.40 26.45 28.23 29.80 31.30 25.10 27.81 27.01 24.60 26.87 28.54 30.17

Ave. 27.10 29.17 28.38 26.70 28.17 29.78 31.13 25.47 27.74 27.02 24.75 26.71 28.43 29.82

Table 2 Comparison of denoising performance (PSNR) with six other algorithms on the indoor test set, at σ = 45, 55.

σ 45 55
Image NLM BM3D BM4D TID PMHD Proposed Ideal NLM BM3D BM4D TID PMHD Proposed Ideal

i1 23.53 25.82 25.26 23.27 24.44 27.58 28.35 20.73 24.34 23.88 21.85 23.11 26.48 27.17
i2 24.86 26.41 25.71 23.54 25.71 27.17 28.80 22.49 25.35 24.69 22.06 24.53 26.10 27.81
i3 25.11 26.70 26.13 23.24 25.85 27.47 28.80 22.86 25.78 25.22 21.90 24.81 26.46 27.81
i4 23.78 25.34 24.77 22.64 24.66 26.32 27.73 21.89 24.56 24.03 21.46 23.74 25.44 26.89
i5 23.16 25.08 24.83 23.04 24.46 26.08 27.49 22.40 24.39 24.19 21.84 23.76 25.43 26.76
i6 27.02 28.44 27.96 24.17 27.30 28.48 30.02 26.57 27.89 27.36 22.68 26.67 27.45 29.00
i7 22.87 24.36 24.12 22.66 23.89 25.36 27.39 22.60 23.83 23.69 21.48 23.39 24.70 26.76
i8 24.65 28.28 27.19 22.81 26.64 28.44 29.78 23.10 27.13 26.12 21.57 25.46 27.32 28.62
i9 23.27 24.95 24.80 22.97 24.60 26.32 27.89 22.59 24.08 23.95 21.76 23.78 25.62 27.12

i10 23.21 26.56 25.99 22.90 25.56 27.50 28.61 21.86 25.54 25.03 21.58 24.44 26.52 27.61
i11 25.34 28.59 27.68 23.90 26.78 28.81 29.92 24.15 27.66 26.82 22.38 25.81 27.63 28.72
i12 24.80 27.47 26.99 23.53 26.31 28.01 29.31 23.78 26.66 26.22 22.15 25.43 26.97 28.31
i13 24.89 27.18 26.85 23.47 26.18 27.76 29.15 23.99 26.43 26.14 22.17 25.37 26.79 28.20
i14 23.85 26.61 25.96 23.09 25.69 27.47 29.20 22.86 25.65 25.08 21.86 24.70 26.53 28.31

Ave. 24.31 26.56 26.02 23.23 25.58 27.34 28.74 22.99 25.66 25.17 21.91 24.64 26.39 27.79
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Fig. 14 Qualitative results on the three test sets (indoor (blue), outdoor (red), and low-light (green) corresponding to the first two, following two,
and the last two images in row one). Numbers under each method represent the PSNR values for the outdoor/low-light images.
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Fig. 15 Quantitative evaluation on the outdoor test set (top) and the
low-light test set (bottom), over a range of noise levels.

methods that are robust to radiometric changes: HMI [18]
(which is shown to perform better on image noise [20]),
ANCC [17] (which is also reported to be robust against
noise variations), ADSM [24] (which is the state-of-the-
art radiometric-change-resistant method), and PMHD [16]
for noisy stereo images. In addition to these state-of-the-art
radiometric-robust methods, we also compare with some se-
quential implementations of denoising followed by stereo
matching to validate the effectiveness of the proposed joint
framework. The first one (NLM + cross-scale stereo match-
ing), denoted as ‘NLM+CS’, is similar to the unroll of our
approach. The second one (MLP+CS) is a state-of-the-art
denoising method MLP (multi layer perceptron) [6] fol-
lowed by cross-scale stereo matching. As the MRF-based
global stereo matching method is supposed to be robust to
radiometric changes like noise, the third sequential baseline
(NLM+MRF) applies an MRF-based method [13] to image
pair denoised by NLM. Again, PMHD is based on our im-
plementation, while the other methods are based on the au-
thors’ own codes.

Fig. 16 shows quantitative and qualitative results on the
indoor test set. We can see that the error percentage of the
proposed method outperforms other methods significantly,
and performs consistently across all noise levels. Although
ANCC [17] is supposed to be robust to various illumina-
tion and exposure changes, only the right images were con-
taminated by noise (while the left images were kept clean)
in their experiments. In practice, if one image is contam-
inated by noise, the other image is very likely to be sim-
ilar. Hence, in our experiment, both images are corrupted

by noise. Under this situation, ANCC fails to estimate a
disparity map with reasonable accuracy. HMI and PMHD
show similar performances, while PMHD performs better
on higher noise levels. HMI was shown to perform best in
noisy scenarios among the selected matching costs in [20].
However, at high noise levels, PMHD performs slightly bet-
ter than HMI as it utilizes the non-local information for
matching, which is more robust to noise. ADSM has a
similar performance to HMI and PMHD. We also observe
that NLM+MRF performs better than other non-sequential
methods. The unrolled sequential setup NLM+CS outper-
forms the above methods, but increases in error percent-
age as the noise level increases. MLP+CS performs better
than the NLM+CS method, but also increases in error per-
centage as the noise level increases. On the other hand, the
proposed method performs significantly better than all the
above methods, and its performance is nearly independent
of the noise level.

The outdoor test set from KITTI was originally proposed
for stereo matching, including several practical factors that
influence the matching between two views. The first row of
Fig. 17 compares the performances of different methods on
KITTI over a range of noise levels. The second row com-
pares their visual qualities. We can see that the result is
similar to that of the indoor test set. The sequential meth-
ods perform better than the other non-sequential methods,
with NLM+CS performing slightly better than MLP+CS
here. The proposed method continues to outperform other
methods, and has an approximately 50% reduction in er-
ror percentage over NLM+CS (the best performing sequen-
tial method). This demonstrates the effectiveness of the pro-
posed method on outdoor scenes.

Disparity estimation is difficult under the low-light con-
dition, as the image contrast becomes low. When corrupted
by noise, it becomes even more difficult to estimate the cor-
respondences. As in the denoising experiment, we evaluate
the proposed method using two representative noise levels
(σ = 25,55), as shown in Fig. 18. We can see that the pro-
posed method outperforms all the other methods at both low
and high noise levels, and has a lower error percentage than
the sequential methods by more than 20%.

To evaluate the effectiveness of the proposed PCIE
matching cost, in this experiment, we keep other settings the
same but replace PCIE with other matching costs: HMI [18],
PCAD-only and IE-only. As shown in Fig. 19, both HMI and
IE-only perform similarly and their performances decrease
linearly with the increase in the noise level. Although HMI is
computed based on the mutual information, it still depends
on the intensity. Likewise, IE-only is based on edge informa-
tion. As the noise level increases, the intensity and the edge
information are affected and thus, the performances of HMI
and IE-only degrade. In general, PCAD-only performs bet-
ter than HMI and IE-only. Its performance is less affected
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Fig. 16 Performance comparison of disparity estimation on the indoor test set. First row shows the quantitative comparison, while second row
shows the visual comparison at σ = 25. The left/right diagrams on the first row correspond to the left/right images in the second row.

by the noise level, as it is computed in a lower-dimension
projected by PCA. On the other hand, the proposed PCIE,
which combines PCAD and IE, performs consistently bet-
ter than all the other matching costs. Its performance is also
nearly independent of the noise level.

4.5 Performance on Images with Real Noise

In addition to the evaluations on public datasets with syn-
thetic noise, we have also tested the performance of the pro-
posed method on images corrupted by real noise. The test
set on real noise is captured by a stereo camera. Here, we
experiment with two image pairs, referred to as console and
shelf, as shown in Fig. 20. As their noise levels are unknown,
a method similar to [27] is applied to do the noise estima-
tion. Fig. 20 compares the denoising performance of the pro-
posed method with BM3D and PMHD. We can see that the
proposed method performs well on images corrupted by real
noise. For example, the noise on the floor of console and on

the pictures of shelf is significantly reduced. Fig. 21 com-
pares the disparity estimation performance of the proposed
method with HMI and NLM+CS. The proposed method can
estimate the disparity well in low-texture regions and on ob-
ject edges, as compared with the other two methods. This
demonstrates that the proposed method also performs well
on the captured noisy data.

5 Applications

There are many depth-aware applications for stereo scenar-
ios. They typically leverage both the intensity/color images
and the depth/disparity image as input to generate some vi-
sual pleasing or synthetic results. To demonstrate the effec-
tiveness of the proposed method, we discuss two applica-
tions: digital refocusing and virtual view synthesis. The only
input to both applications is a stereo pair of noisy images.
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Fig. 17 Performance comparison of disparity estimation on the out-
door test set. Top row shows the average error percentages while bot-
tom row shows a visual example (noise level is set to 25). Numbers in
brackets are the error percentages.
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Fig. 18 Disparity performance on the low-light test set.

5.1 Digital Refocusing

Digital refocusing or time-shift photography is an image
editing strategy in computational photography. It is a pro-
cess to simulate the focusing of a camera as an image is
being captured. However, unlike focusing with a hardware
camera, digital refocusing can shift the in-focus region to
anywhere on the image, at least theoretically. It is one of
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Fig. 19 Quantitative and qualitative performance comparisons on dif-
ferent matching costs.

the most popular depth-aware image processing techniques.
Once an accurate depth is acquired, we may set to focus
on a specific depth range, producing the depth-of-field ef-
fect. However, in a noisy situation, the captured images will
be noisy and the estimated depth from these noisy images
will also have many outliers. As such, traditional refocusing
methods will not perform well. Since the proposed method
aims at addressing the problems due to the input noisy im-
ages, it can be directly applied here. The digital refocusing
result is shown in Fig. 22. To better imitate the real depth-
of-field effect produced by a camera, we apply the physical
model in [45] to blur the out-focus regions. From the result,
we can see that the proposed method produces much cleaner
and better depth-of-field effect than the traditional method.

5.2 Virtual View Synthesis

Another popular depth-aware application is virtual view
synthesis or depth-based image rendering (DBIR). It uses
one color image and the corresponding depth/disparity map
as inputs and generates another or several virtual views. The
intensity/color information is warped to other pixel positions
based on the corresponding depth values. This is usually ap-
plied to the 1-to-N or 2-to-N video system for synthesiz-
ing novel views and saves the hardware cost. Although there
are many methods proposed for virtual view synthesis based
on depth information, they all assume clean input images.
Fig. 23 shows an example result in synthesizing novel views
from noisy input images. The proposed method produces far
fewer artifacts in the synthesized images than those from the
traditional method.

6 Conclusions

In this paper, we have proposed a joint framework to it-
eratively optimize image denoising and disparity estima-
tion on noisy stereo images. We achieve this by mutually
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Noisy input (left view) ProposedBM3D PMHD

Fig. 20 Denoising performance on images captured with real noise. The first row is the results of image console, while the third row is the results
of image shelf. Enlarged regions are shown in the second and fourth rows.

Noisy input (left view) ProposedHMI NLM+CS (sequential)

Fig. 21 Disparity estimation performance on images console (first row) and shelf (third row) captured with real noise. Enlarged regions are shown
in the second and fourth rows.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 22 Digital refocusing results. (a) left input noisy view. (b) using
a traditional method. (c) refocusing with the proposed method. (d) and
(f) are two cropped regions from (b), while (e) and (g) are the corre-
sponding regions from (c).

(a)

(b)

(c)

(d) (e)

(f) (g)

Fig. 23 Results of virtual view synthesis. (a) left noisy view. (b) tra-
ditional method. (c) the proposed algorithm. (d)-(e) are two magnified
regions from (b), while (f)-(g) are the corresponding regions from (c).

leveraging the information from the stereo images and the
estimated disparity. The proposed method is mainly based
on the idea from non-local means, which groups simi-
lar patches non-locally. Unlike single-image denoising, we
propose a new stereo structure algorithm to group similar
patches from both intra and inter stereo images. For dis-
parity estimation, we propose a combined matching cost
to better describe the similarity in noisy situation. In addi-
tion, a multiscale framework is proposed to integrate denois-
ing and disparity estimation, in which both performances
are iteratively improved. We have evaluated the effective-
ness of the proposed method both quantitatively and quali-
tatively through different test sets (indoor, outdoor and low-
light). Experimental results show that the proposed method
outperforms both single-image and multi-image denoising
methods, and achieves better performance than the state-of-
the-art radiometric-change-robust stereo matching methods.
The proposed method also performs well on images with
real noise. As the proposed framework leverages stereo in-
formation for denoising while simultaneously improving the
disparity quality, it can be considered as a generic frame-
work, in which each part can be adapted for specific opera-
tions (e.g., BM3D with Wiener filter or multiple images with
optical flow).

As a future work, we plan to migrate the proposed
framework to the mobile environment to support mobile ap-
plications.
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