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Abstract

With its significant performance improvements, the deep
learning paradigm has become a standard tool for modern
image denoisers. While promising performance has been
shown on seen noise distributions, existing approaches of-
ten suffer from generalisation to unseen noise types or gen-
eral and real noise. It is understandable as the model is
designed to learn paired mapping (e.g. from a noisy image
to its clean version). In this paper, we instead propose to
learn to disentangle the noisy image, under the intuitive
assumption that different corrupted versions of the same
clean image share a common latent space. A self-supervised
learning framework is proposed to achieve the goal, with-
out looking at the latent clean image. By taking two differ-
ent corrupted versions of the same image as input, the pro-
posed Multi-view Self-supervised Disentanglement (MeD)
approach learns to disentangle the latent clean features
from the corruptions and recover the clean image conse-
quently. Extensive experimental analysis on both synthetic
and real noise shows the superiority of the proposed method
over prior self-supervised approaches, especially on unseen
novel noise types. On real noise, the proposed method even
outperforms its supervised counterparts by over 3 dB.

1. Introduction

Image restoration is a critical sub-field of computer vi-
sion, exploring the reconstruction of image signals from
corrupted observations. Examples of such ill-posed low-
level image restoration problems include image denoising
[16, 25, 26, 29, 33, 35, 38], super-resolution [2, 8, 19, 30, 37],
and JPEG artefact removal [7, 12, 31], to name a few. Usu-
ally, a mapping function dedicated to the training data dis-
tribution is learned between the corrupted and clean images
to address the problem. While many image restoration sys-
tems perform well when evaluated over the same corruption
distribution that they have seen, they are often required to be
deployed in settings where the environment is unknown and
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Figure 1. Denoising performance on unseen Speckle Noise
with v̂ = 50. The models were trained with Gaussian noise
σ ∈ [5, 50]. (a) The noisy and clean images, with ground-truth
clean patches shown below. (b) Noise-to-Clean (N2C) [21] is
trained with clean images. (c) LIR [9] is self-supervised but needs
unpaired clean images as training data. (d) Our approach is fully
self-supervised, training with only the noisy input data.

off the training distribution. These settings, such as medical
imaging, computational lithography, and remote sensing,
require image restoration methods that can handle complex
and unknown corruptions. Moreover, in many real-world
image-denoising tasks, ground truth images are unavailable,
introducing additional challenges.
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Limitations of existing methods: Current low-level cor-
ruption removal tasks aim to address the inquiry of “what is
the clean image provided a corrupted observation?” How-
ever, the ill-posed nature of this problem formulation poses
a significant challenge in obtaining a unique resolution [5].

To mitigate this limitation, researchers often introduce
additional information, either explicitly or implicitly. For
example, in [15], Laine et al. explicitly use the prior
knowledge of noise as complementary input, generating a
new invertible image model. Alternatively, Learning Invari-
ant Representation (LIR) [9] implicitly enforces the inter-
pretability in the feature space to guarantee the admissibility
of the output. However, these additional forms of informa-
tion may not always be practical in real-world scenarios or
may not result in satisfactory performance.

Main idea and problem formulation: Our motivation
for tackling this ill-posed nature stems from the solution in
the 3D reconstruction of utilising multiple views to provide
a unique estimation of the real scene [1]. Building on this
motivation, we propose a training scheme that is explicitly
built on multi-corrupted views and perform Multi-view self-
supervised Disentanglement, abbreviated as MeD.

Under this new multi-view setting, we reformulate the
task problem as “what is the shared latent information
across these views?” instead of the conventional “what is
the clean image?” By doing so, MeD can effectively lever-
age the scene coherence of multi-view data and capture un-
derlying common parts without requiring access to the clean
image. This makes it more practical and scalable in real-
world scenarios. An example of the proposed method with
comparison to prior works is shown in Figure 1, indicating
its effectiveness over the state-of-the-art.

Specifically, given any scene image xk ∼ X , k ∈ N sam-
pled uniformly from a clean image set X , MeD produces
two contaminated views:

yk1 ≜ T1(xk), yk2 ≜ T2(xk), (1)

forming two independent corrupted image sets {Y1}, {Y2},
where yk1 ∈ Y1, y

k
2 ∈ Y2. The T1 and T2 represent two

random independent image degradation operations.
We parameterise our scene feature encoder GX

θ and de-
coder DX

ψ with θ and ψ. Considering the image pair
{yk1 , yk2}k∈N, the core of the presented method can be sum-
marised as:

GX
θ (yk1 ) ≜ zk,ix ≜ GX

θ (yk2 ), (2)

x̂k ≜ DX
ψ (zk,ix ), (3)

where zk,ix represents the shared scene latent between yk1
and yk2 with i referring to the input image index of yi. A
clean image estimator DX

ψ forms an all-deterministic re-
verse mapping from zk,ix to reconstruct an estimated clean

image x̂k. Similarly, the noise latent uk,iη is factorised from
a corrupted view with a corruption encoder EN

ρ . After-
words, the resulting corruption is reconstructed from uk,iη
through the use of a corruption decoder, represented by FN

ϕ .
The disentanglement is then performed between

{zk,ix , uk,jη }i̸=j on a cross compose decoder RY
δ with pa-

rameter δ, which can be formulated as:

ŷk1 ≜ RY
δ (z

k,2
x , uk,1η ). (4)

It should be noted that Equation (4) is performed over
latent features u and z from different views. When assum-
ing that zkx remains constant across views, the reconstructed
view ŷk1 is determined by the uk,1η .

Contributions. The contributions of our work are sum-
marised as follows:

• We propose a new problem formulation to address the
ill-posed problem of image denoising using only noisy
examples, in a different paradigm than prior works.

• We introduce a disentangled representation learning
framework that leverages multiple corrupted views to
learn the shared scene latent, by exploiting the coher-
ence across views of the same scene and separating
noise and scene in the latent space.

• Extensive experimental analysis validates the effec-
tiveness of the proposed MeD, outperforming exist-
ing methods with more robust performance to un-
known noise distributions, even better than its super-
vised counterparts.

2. Related Work
Single-view image restoration: In [8], Dong et al. were
the first to employ a deep network in super-resolution.
Later, a range of single view-based models expanded the
idea of supervised deep learning to handle image restora-
tion tasks, such as deblurring [14], JPEG artefacts [12], in-
painting [17, 34] and denoising [16, 26, 35]. Recently, it is
receiving increasing interest in relaxing the prerequisite of
supervised learning with corrupted/ clean image pairs. In
the context of image denoising, the “corrupted/clean” pair
denotes a corrupted input image and its corresponding clean
image for calculating the loss. To tackle the issue of the lack
of clean data, several methods have been proposed, such
as the Noise2Noise (N2N) method [16] and Recorrupted-
to-Recorrupted (R2R) [26], which train deep networks on
pairs of noisy images. Noise2Void (N2V) [13], Noise2Self
(N2S) [4], and the method proposed by Laine et al. [15] are
based on the blind-spot strategy that discards some pixels in
the input and predicts them using the remaining. In the field
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Figure 2. Method Overview. This figure illustrates the main steps of our proposed method, MeD, which first generates scene features
(cubes) and distortion features (cuboids). The colour of them indicates their image source. In the right section, the features are rearranged
and utilised for the four forward paths, from top to bottom, which are the reconstructions of noise (η̂k

1 ), scene (x̂k
2 ), input image (yk

2 ) and
shared scene (x̂k). It is noteworthy that ŷk

2 is reconstructed using zk,1x from yk
1 and uk,2

η from yk
2 for feature disentanglement. Additionally,

the reconstruction of x̂k relies on mixed scene features to facilitate learning of invariant scene latent. Moreover, the reconstruction paths
for (η̂2, x̂1, and y1) are not depicted here, as they differ from the given paths only in their sub-indexes.

of single-image denoising, some methods such as DIP [29]
and S2S [27], have achieved remarkable denoising results
using only one noisy image.

These methods, however, often inevitably compromise
image quality to noise reduction, resulting in over-smoothed
output. This trade-off is further exacerbated under domain
shifts when dealing with unknown noise distributions.

Restoration based on multiple views: Existing multi-
view variants of image restoration methods mainly focus on
sequential data such as video or burst images. For example,
Tico [28] builds a paradigm that separates the unique and
common features within the multi-frame to produce a de-
noised estimate. Liu et al. [20] models degrading elements
as foreground and estimate background using video data.
Deep Burst Denoising (DBD) [11] performs multi-view de-
noising based on burst images. Each image is taken in a
short exposure time and serves as a corrupted observation
of the clean image.

Unlike the above-mentioned methods, our MeD aims to
use multiple static observations simultaneously to learn the
latent representation of a clean scene that is shared by mul-
tiple discrete views.

Self-supervised feature disentanglement: Another no-
table path of work has attempted to disentangle underlying
invariant content from distorted images. For instance, UID-

GAN [22] utilises unpaired clean/blurred images to disen-
tangle content and blurring effects in the feature space and
yield improved deblurring performance. Similarly, LIR [9]
used unpaired input to isolate invariant content features
through self-supervised inter-domain transformation.

However, these methods are limited to synthetic noise
and do not extend well in real-world scenarios due to their
reliance on clean images. In contrast, our method is purely
based on multiple noisy views of the same static scene and
aims to disentangle the scene from corruption, without the
need for clean image supervision.

3. Methodology

Our primary objective is to identify the commonali-
ties among different views in the denoising process. To
achieve this, we aim to discover the shared scene zkx that is
degradation-agnostic over various corrupted views {yki }k∈N
via our proposed training schema, namely Multi-view self-
supervised Disentanglement (MeD). A graphic depiction of
MeD is shown in Figure 2, composed of the representation
learning process in the left panel, and four distinct recon-
struction pathways in the right panel.

The detailed design of the proposed schema will be in-
troduced in the following subsections. Section 3.1 explains
the restoration of noise and scene. Section 3.2 details the
reconstruction of noisy input using a cross-feature combi-
nation. Section 3.3 elaborates on the reconstruction of the



scene using mixed scene latent.
We will start our introduction by outlining three essential

properties that a multi-view representation disentanglement
technique should exhibit.

Pre-assumed properties: Suppose the scene latent space
and corruption latent space are symbolised by Zx and Uη ,
respectively.

(1) Independence: For any scene latent zkx ∈ Zx, it is
expected to be independent of any corruption latent
uk,iη ,∈ Uη .

(2) Consistency: There exists one shared latent code zkx ∈
Zx that is capable of representing the shared clean
component of all instances in the set {yki }.

(3) Composability: Recovery of the corrupted view yki can
be achieved using the feature pairs zkx, u

k,i
η , and the

index of the recovered view is determined by the index
of the corruption latent, which represents the unique
component within that particular view.

A key step of our method is to realise these pre-
requisitions by determining how to implement the latent
space assumption. As shown in the left panel of Figure 2,
to infer our latent space assumption, MeD is comprised of
two encoders and three decoders: A shared content latent
encoder GX

θ and its decoder DX
ψ , an auxiliary noise latent

encoder EN
ρ and its decoder FN

ϕ , and a cross disentangle-
ment decoder RY

δ .

3.1. Main Forward Process

Given two corrupted views of the same image xk, yk1 ≜
T1(xk) and yk2 ≜ T2(xk), the encoder GX

θ mainly perform
the scene feature space encoding that can be formulated as:

zk,1x ≜ GX
θ (yk1 ), z

k,2
x ≜ GX

θ (yk2 ), (5)

where zk,1x and zk,2x are the estimation of the scene feature
corresponding to the inputs yk1 and yk2 .

The process of clean image reconstruction is then com-
pleted by the DX

ψ :

x̂k1 ≜ DX
ψ (zk,1x ), x̂k2 ≜ DX

ψ (zk,2x ). (6)

Similar to the process of estimating scene features, the
estimation of distortion features by EN

ρ , followed by the re-
construction of noise with FN

ϕ , can be described as follows:

uk,1n ≜ EN
ρ (yk1 ), u

k,2
n ≜ EN

ρ (yk2 ),

η̂k1 ≜ FN
ϕ (uk,1n ), η̂k2 ≜ FN

ϕ (uk,2n ).
(7)

We adhere to the methodology introduced by N2N [16]
to use noisy images as supervisory signals. The objective

function of the aforementioned process can be simplified
to:

argmin
θ,ψ

LX ≜ ||x̂k1 − yk2 ||,

argmin
ρ,ϕ

LN ≜ ||(yk1 − η̂k1 )− yk2 ||.
(8)

The objective of x̂k2 and η̂k2 are the same as above, with
only a subscript difference. It should be noted that, although
our objective functions are similar to that of N2N, our goal
is not simply to find and remove noise, but rather to capture
the common features shared across multiple views.

3.2. Cross Disentanglement

For general latent codes zkx to sufficiently represent scene
information in the image space, it is natural to assume that
these codes exhibit a certain degree of freedom, allowing
them to intersect with the noise space. Consequently, there
is no guarantee of complete isolation between zkx and ukη .
To meet the requirements of properties (1) and (3), we use
an additional decoder RY

δ to reconstruct a corrupted view
over a cross-feature combination, e.g. zk,1x from y1 and uk,2n
from x2, which can be represented as:

ŷk1 ≜ RY
δ (z

k,2
x , uk,1n ), ŷk2 ≜ RY

δ (z
k,1
x , uk,2n ). (9)

This realisation explicitly requires zk,ix to represent the
common part and uk,jn to represent the unique part within
the corrupted views. We then optimise {θ, ρ, δ} from
{GX

θ ,E
N
ρ ,R

Y
δ } using the following objective:

argmin
θ,ρ,δ

LC ≜ ||ŷk1 − yk1 ||+ ||ŷk2 − yk2 ||. (10)

Generally, it is possible for there to be a trivial solution
from uk,in to yki in Equation (9) such as, when uk,1n is ex-
tracted from yk1 and used to reconstruct it as well. However,
Equation (7) explicitly requires uk,1n to rebuild the noise,
which prevents the collapse of uk,1n in expressing yk1 .

3.3. Bernoulli Manifold Mixture

The aforementioned latent constraint might appear to be
restricted at first, but in fact, it enables us to capture a large
number of degrees of freedom in latent space implemen-
tation. For instance, it is possible to have multiple scene
features that correspond to a single scene. However, in such
cases, the mapping from input to scene features becomes
ambiguous. To tackle this issue, we propose the use of the
Bernoulli Manifold Mixture (BMM) as a means of leverag-
ing the shared structure within the scene latent.

Given the assumption of property (2), the acquired scene
features zk,1x and zk,2x are expected to be identical and inter-
changeable with one another, as they both refer to the same
scene feature. BMM establishes a new explicit connection



between the scene features of multi-views, which can be
expressed in the equation as:

ẑkx ≜ Mixp(zk,1x , zk,2x ), (11)

where the ẑkx is an estimation of the true underlying scene
feature. Let bf define a sample instance drawn from a
Bernoulli distribution with probability p ∈ (0, 1), the func-
tion Mixp(·) described in Equation (11) denotes:

Mixp(m,n) ≜ bf ⊙m+ (1− bf )⊙ n. (12)

By establishing this new connection (Equation 11), we
can enhance the interchangeability between zk,1x and zk,2x
by optimising the reconstruction performance on ẑkx .
Lemma 1. Assuming zk,ix ∼ Nx(µ,Σ), where Nx denotes
multivariate Gaussian distributions and then µ and Σ is the
mean and the covariance matrix.
For a given function GX

θ (·), assume ∀k, i,m, n ∈ N, the
following property holds:

E
[
GX
θ (zk,ix )

]
≜ E

[
GX
θ (Mixp(zk,mx , zk,nx ))

]
. (13)

Proof. Assume zk,mx , zk,nx ∈ Rdim are i.i.d., we may also
factorise bf ∈ Rdim. Write

ẑkx ≜ Mixp(zk,mx , zk,nx ) (14)

so that we can have

ẑx ∼ Nx((bf + 1− bf )µ, (b
2
f + (1− bf )

2)Σ)

∼ Nx(µ,Σ)
(15)

with the fact that Bernoulli sample b2f = bf , the mixed fea-
ture ẑx is in the same representation distribution as zk,ix .

In MeD, we denote ẑx = GX
θ (ẑkx), and the objective for

implementing Equation (13) can be formulated as follows:

argmin
θ,ρ,ψ

LM ≜ λ||ẑx − Mixp(yk1 , y
k
2 )||, (16)

where the λ is the weight parameter. Here, the target is
using a mixed version of yk1 and yk2 . The choice of this is
driven by the intuition that the hybrid version would better
align with the aforementioned blended features.

4. Experiments
To evaluate the effectiveness of our proposed

method, we assess our method against several repre-
sentative self-supervised denoising methods, including
Noise2Noise (N2N) [16], Noise2Self (N2S) [4] and
Recorrupted2Recorrupted (R2R) [26], and the invariant
feature learning method LIR [9]. Moreover, we also
evaluate our approach against two supervised baseline

methods (Noise2Clean (N2C) [21] and multi-frame method
DBD [11]) to further validate its effectiveness. Compar-
isons to more methods, including methods using only one
noisy image, are presented in the supplementary material.

We start our experiments by denoising synthetic addi-
tive white Gaussian noise (AWGN) in Section 4.2, and then
move on to testing unseen noise levels and noise types in
Section 4.3 and Section 4.4, respectively. Furthermore, we
evaluate the performance in real-world scenarios in Section
4.5. In Section 4.6, we expand our experiments to incor-
porate more views to study their impact on performance.
Finally, in Section 4.7, we apply our method to other tasks,
e.g. image super-resolution and inpainting, to demonstrate
its generalisation ability.

4.1. Experimental Setups

Noted that, the nature of feature disentanglement re-
quires no leak from input to output, however, the global
residual connection of the original DnCNN [35] cannot sat-
isfy. Thus, we incorporate the Swin-Transformer (Swin-T)
[21] instead of the traditionally used DnCNN in our exper-
iments. Nevertheless, as Swin-T is not originally designed
for image restoration, we make some modifications to en-
force local dependence across the image. Specifically, we
add one Convolution Layer each before the patch embed-
ding and after the patch unembedding of Swin-T, as inspired
by SwinIR [18]. The resulting modified network backbone
is denoted as Swin-Tx.

To ensure a fair comparison, we use the Swin-Tx back-
bone for all methods in our study, except for DBD. As DBD
did not release the code, we follow the instructions pre-
sented in the paper and make our best effort to re-implement
it. However, we observe that the two-view DBD could not
converge efficiently, which is consistent with the findings in
the paper. Therefore, we limit our evaluation to the four-
view DBD, denoted as DBD4. Furthermore, we replace
the U-Net backbone originally used in the LIR method with
Swin-Tx to maintain consistency in our evaluation. This re-
sults in an average improvement of approximately 1 dB in
PSNR for Gaussian denoising.

In all experiments, all methods were trained using only
DIV2K [3] and the same optimisation parameters, ex-
cept for LIR and DBD4 which used manually selected pa-
rameters obtained through experiments. For more train-
ing and evaluation details including the choice of param-
eters, please refer to the supplementary material. Code is
available at: https://github.com/chqwer2/Multi-view-Self-
supervised-Disentanglement-Denoising.

Remark: In tables, the best results are highlighted in
bold, while the second best is underlined.

https://github.com/chqwer2/Multi-view-Self-supervised-Disentanglement-Denoising
https://github.com/chqwer2/Multi-view-Self-supervised-Disentanglement-Denoising


Table 1. Quantitative comparison of different methods on CBSD68 Dataset [23] for Synthetic Gaussian noise. The experiments were
conducted on fixed and random variance, respectively. The best results are highlighted in bold, while the second best is underlined.

Training Test Noisy/ Clean Noisy/ Noisy Invariant Feature
Schema σ̂ N2C [21] DBD4 [11] N2N [16] N2S [4] R2R [26] LIR [9] MeD (ours)

Gaussian
σ = 25

15 33.36/ 0.9020 33.57/ 0.9092 32.64/ 0.8805 32.77/ 0.8780 29.74/0.7865 31.06/ 0.8632 33.11/ 0.8880
25 30.83/ 0.8494 31.31/ 0.8548 30.68/ 0.8334 30.99/ 0.8405 30.45/0.8183 30.01/ 0.8024 30.57/ 0.8496
50 24.76/ 0.5519 25.12/ 0.5583 24.59/ 0.5385 22.13/ 0.3928 24.02/0.5133 21.97/ 0.3578 25.67/ 0.6026
75 20.75/ 0.3376 21.09/ 0.3412 20.60/ 0.3162 17.86/ 0.1998 19.10/0.2641 16.23/ 0.1689 23.09/ 0.4320

Gaussian
σ ∈ [5, 50]

15 33.47/ 0.9027 33.12/ 0.8915 33.45/ 0.8945 31.28/ 0.8187 20.76/ 0.2508 30.85/ 0.8431 33.62/ 0.9026
25 30.87/ 0.8538 30.64/ 0.8491 30.77/ 0.8423 29.65/ 0.7801 23.91/ 0.4552 28.92/ 0.8069 30.91/ 0.8573
50 27.41/ 0.7361 27.13/ 0.7290 27.15/ 0.7219 27.00/ 0.7114 26.92/ 0.6911 25.13/ 0.6191 27.48/ 0.7530
75 25.05/ 0.6223 24.97/ 0.6205 24.80/ 0.5908 24.89/ 0.6023 23.83/ 0.5132 22.37/ 0.4212 25.40/ 0.6645

Table 2. Quantitative result of generalisation performance experiment on CBSD68 [23]. All methods use Gaussian σ = 25 for pre-trained
methods and then Gaussian σ ∈ [5, 50] for fine-turning. The better result in each method is highlighted in italics.

Fine-tuning Method N2C [21] N2N [16] LIR [9] MeD
Pretraining Method N2C MeD N2N MeD LIR MeD MeD

Gaussian, σ̂ ∈ [15, 75] 29.20/ 0.7797 29.53/ 0.8081 29.04/ 0.7642 29.21/ 0.7890 26.42/ 0.6640 27.25/ 0.7036 29.60/ 0.8101
Local Var Gaussian 35.62/ 0.9308 35.85/ 0.9439 35.66/ 0.9256 35.73/ 0.9310 29.26/ 0.8170 30.51/ 0.8387 35.91/ 0.9762
Poisson Noise 40.49/ 0.9736 42.80/ 0.9776 41.35/ 0.9736 42.27/ 0.9813 31.23/ 0.8672 33.47/ 0.8932 45.05/ 0.9826
Speckle, v̂ ∈ [25, 50] 33.36/ 0.9004 33.40/ 0.9044 33.32/ 0.8931 33.33/ 0.8907 28.28/ 0.7713 29.82/ 0.8229 33.48/ 0.9115
S&P, r̂ ∈ [0.3, 0.5] 28.85/ 0.8267 30.73/ 0.8372 28.59/ 0.8003 29.45/ 0.8255 26.69/ 0.7241 27.62/ 0.7460 30.84/ 0.9135

Average 33.50/ 0.8822 34.46/ 0.8942 33.59/ 0.8714 34.00/ 0.8835 28.38/ 0.7687 29.73/ 0.8009 34.98/ 0.9188

4.2. AWGN Noise Removal

We first investigate the denoising generalisation of the
methods using synthetic zero-mean additive white Gaussian
noise (AWGN). The experiments are divided into two parts.
The first segment employs fixed variance AWGN, whereas
the second segment employs varied variance Gaussian for
training in a separate manner. Table 1 summarises the quan-
titative results evaluated on CBSD68 Dataset [23] at vari-
ance levels of 15, 25, 50, and 75.
Analysis: In the fixed variance setting, MeD performs in-
ferior compared to the other methods on lower noise levels
of 15 and 25. However, as the methods face more severe
corruption, MeD outperforms all self-supervised and super-
vised methods, showing our greater advantage of handling
severe noise. For instance, at σ = 75, MeD outperforms the
second-best method (N2C) by around 2 dB. These results
suggest that MeD has a remarkable ability to generalise to
a range of unseen noise levels in Gaussian noise.

In the context of random variance, it has been observed
that MeD exhibits superior performance across all four
noise levels compared to other methods, including super-
vised methods. These findings imply that MeD can benefit
more from varying training noise than other methods. More
experiments and details on AWGN noise removal can be
found in the supplementary material.

4.3. Generalisation on Unseen Noise Removal

In the previous subsection, we demonstrated the remark-
able generalisation ability of our model in the case of Gaus-

sian noise. Here, we aim to extend this investigation to other
types of unseen noise and evaluate the denoising generalisa-
tion ability of our method. Specifically, we consider Pois-
son noise, Speckle noise, Local Variance Gaussian noise,
and Salt-and-Pepper noise. For a more detailed synthetic
process, please refer to the supplementary material.

First, we demonstrate qualitative comparisons of de-
noising unseen noise types using models trained only with
Gaussian σ = 25 in Figure 3. Next, in order to further ver-
ify the denoising generalisation ability of MeD, we employ
its scene encoder and decoder as pre-trained models to be
compared against other methods. It should be noted that
the pre-training and fine-tuning methods employed in this
study may differ, as shown in Table 2. The pre-training of
all test models was conducted on a Gaussian sigma value of
25, followed by fine-tuning with a Gaussian sigma range of
5 to 50. Since the training schema of N2S, R2R, and DBD4

differs from MeD, we do not include them in this section.
However, evaluations of these methods on unseen noise are
still presented in Section 4.4 under different settings.

Analysis: Qualitative results in Figure 3 show that under
Gaussian σ = 25 training settings, our method surpasses
other methods in denoising unseen noise types. Addition-
ally, Table 2 shows that the approaches using pre-trained
MeD models outperform their self-transfer models for N2C,
N2N, and LIR, with improvements of up to 2 dB in some
cases. On average, the MeD pre-trained models show a per-
formance gain of around 0.5 dB across all methods, high-
lighting the potential of MeD as a powerful pre-training



McM-17 [36] Reference N2C [35] DBD [11] N2N [16] N2S [4] R2R [26] LIR [9] MeD (Ours)
Speckle v̂ = 50 PSNR/SSIM 27.58/ 0.7712 28.10/ 0.7347 27.06/ 0.7452 26.99/ 0.7338 25.56/ 0.5529 23.29/ 0.5681 28.57/ 0.7722

McM-01 [36] Reference N2C [35] DBD [11] N2N [16] N2S [4] R2R [26] LIR [9] MeD (Ours)
Gaussian σ̂ = 75 PSNR/SSIM 27.09/ 0.6561 26.77/ 0.4824 26.84/ 0.5177 26.64/ 0.4359 25.5/ 0.5451 23.24/ 0.2298 27.91/ 0.7651

Kodak-21 [10] Reference N2C [35] DBD [11] N2N [16] N2S [4] R2R [26] LIR [9] MeD (Ours)
S&P r̂ = 0.3 PSNR/SSIM 33.26/ 0.9224 34.25/ 0.9413 30.83/ 0.8857 31.07/ 0.8864 29.03/ 0.8377 27.40/ 0.6498 36.83/ 0.9246

Figure 3. Qualitative denoising results on unseen noise types. All the methods are trained with Gaussian σ = 25. The quantitative
PSNR/SSIM results are provided underneath the respective images. Best viewed in colour (zoom-in for a better comparison).

Table 3. Analysis of Noise Pool on CBSD68 [23]. All methods were trained using randomly drawn noise from the Noise Pool.

Test Noise
Noisy/ Clean Noisy/ Noisy Invariant Feature

N2C [21] DBD4 [11] N2N [16] N2S [4] R2R [26] LIR [9] MeD (ours)

Gaussian, σ̂ ∈ [15, 75] 29.24/ 0.7754 29.05/ 0.7616 29.23/ 0.7634 28.58/ 0.7589 26.43/ 0.6639 26.67/ 0.6866 29.61/ 0.8178
Local Var Gaussian (LVG) 36.64/ 0.9442 36.18/ 0.9307 36.65/ 0.9235 33.24/ 0.8858 34.70/ 0.8779 31.61/ 0.8627 37.99/ 0.9568
Poisson Noise 45.72/ 0.9764 44.23/ 0.9606 45.64/ 0.9799 46.31/ 0.9808 44.45/ 0.9491 43.27/ 0.9292 48.10/ 0.9916
Speckle, v̂ ∈ [25, 50] 35.58/ 0.9417 35.24/ 0.9385 35.34/ 0.9475 35.13/ 0.9596 34.20/ 0.9078 33.98/ 0.8810 37.21/ 0.9715
S&P, r̂ ∈ [0.3, 0.5] 38.85/ 0.9165 37.10/ 0.8884 38.89/ 0.9289 38.22/ 0.9330 36.17/ 0.9087 33.43/ 0.8202 42.33/ 0.9695
Gaussian σ̂ = 25 + Speckle v̂ = 25 30.19/ 0.8279 29.24/ 0.8156 30.32/ 0.8317 29.51/ 0.8050 28.78/ 0.7744 29.20/ 0.7871 31.92/ 0.8726
Gaussian σ̂ = 50 + Speckle v̂ = 25 27.30/ 0.7251 26.55/ 0.7126 27.23/ 0.7331 26.91/ 0.7081 26.49/ 0.6935 26.19/ 0.6941 29.68/ 0.7928
LVG + Poisson 31.78/ 0.9087 31.10/ 0.8842 31.60/ 0.7617 30.15/ 0.8086 28.52/ 0.7144 27.33/ 0.7234 34.29/ 0.9325
Poisson + Speckle v̂ = 25 31.39/ 0.9069 30.86/ 0.8782 31.52/ 0.8935 30.58/ 0.9067 30.34/ 0.8897 29.93/ 0.8554 33.04/ 0.9258

Average 34.08/ 0.8803 33.28/ 0.8634 34.05/ 0.8626 33.18/ 0.8607 32.23/ 0.8199 31.29/ 0.8044 36.02/ 0.9145

method for image denoising. It is noteworthy that the
self-transfer MeD model exhibits the best denoising perfor-
mance across all validation noise types, even outperforming
the supervised method, N2C. This is particularly evident in
Poisson noise, where MeD surpasses N2C by ∼3 dB. These
results highlight the generalisation ability of our approach
in handling unseen noise.

4.4. Experiments on General Noise Pool

Here we further investigate the generalisation ability of
our method by introducing our general Noise Pool. The
Noise Pool comprises the five aforementioned types of
noise, each with a diverse range of noise levels. During
training, we randomly sample from the noise pool to pro-
vide the model with noisy images. This novel approach
simulates a realistic scenario where noise is unknown and
can originate from various sources to some extent.

Specifically, we evaluated all methods using the random

noise pool approach to train and test on combined or single
noise types. The results are summarised in Table 3.

Analysis: In Table 3, our MeD approach outperforms all
other methods significantly on all the test noise types. For
example, when a test noise containing a combination of
Gaussian noise with σ̂ = 50 and Speckle noise with v̂ = 25
is used, other methods exhibit an approximate performance
of ∼27 dB. However, MeD achieves significantly better re-
sults with a performance of 29.68 dB. And on average, MeD
exhibits a performance that is approximately 2 dB better
than other methods. Our findings show that utilising a com-
prehensive noise pool for training purposes can effectively
improve the generalisation capability. Furthermore, the re-
markable denoising generalisation ability of our MeD ap-
proach, in comparison to other methods, is particularly ad-
vantageous for real-world applications.



PSNR/ SSIM 31.38/ 0.8912 30.19/ 0.7449 29.60/ 0.7053
Ground Truth [1] N2C [21] DBD4 [11] N2N [16]

23.68/ 0.2967 28.58/ 0.6081 26.58/ 0.4257 25.91/ 0.3795 33.07/ 0.8849
Noisy Image from SIDD [1] (ISO 800) N2S [4] R2R [26] LIR [9] MeD (Ours)

PSNR/ SSIM 28.36/ 0.5661 27.58/ 0.5406 27.23/ 0.49
Reference N2C [21] DBD4 [11] N2N [16]

25.33/ 0.3865 27.58/ 0.5516 26.77/ 0.4889 26.45/ 0.4752 30.23/ 0.6703
Noisy Image from SIDD N2S [4] R2R [26] LIR [9] MeD (Ours)

Figure 4. Real Noise Removal Example of SIDD [1]. All the methods are trained with Noise Pool on the DIV2K [2] dataset. It can be seen
that the proposed MeD can remove much real noise even without training with real-noise distribution (zoom in for a better comparison).

Table 4. Quantitative result obtained from the application of vari-
ous methods trained on a general Noise Pool to real noise datasets.

Method PolyU [32] SIDD [1] CC [24] Average

N2C [21] 35.89/ 0.9652 30.37/ 0.6028 37.89/ 0.9408 34.72/ 0.8363
DBD4 [11] 35.69/ 0.9571 30.23/ 0.6173 37.74/ 0.9357 34.55/ 0.8367
N2N [16] 36.22/ 0.9679 32.82/ 0.7297 37.39/ 0.9570 35.48/ 0.8849
N2S [4] 36.41/ 0.9721 30.98/ 0.6018 37.58/ 0.9622 34.99/ 0.8454
R2R [26] 34.58/ 0.8890 29.64/ 0.5708 35.35/ 0.8478 33.19/ 0.7692
LIR [9] 34.81/ 0.7278 28.76/ 0.5296 35.50/ 0.8403 33.02/ 0.6992

MeD (ours) 38.65/ 0.9855 35.81/ 0.8278 40.08/ 0.9745 38.18/ 0.9293

4.5. Real Noise Removal

In our previous experiments, we demonstrated the ex-
ceptional denoising performance of our MeD approach on
synthetic noises. However, real-world noise is often more
complex and challenging than synthetic noise. In this sub-
section, we aim to evaluate the generalisation performance
of our approach on real-world noise by testing it on the
SIDD [1], CC [24] and PolyU [32] datasets. To assess
the denoising performance on real-world noise, we use the
same pre-trained models as in Section 4.4. The representa-
tive qualitative results on the SIDD dataset in the standard
RGB colour space are presented in Figure 4.

Analysis: As shown in Table 4, our approach significantly
outperforms all other methods across all three datasets, with
a performance improvement of 2-3 dB over the second-best
approach, and also consistently outperforms its supervised
counterparts (i.e. N2C and DBD4) by over 3 dB. These re-
sults suggest the effectiveness and generalisability of the
proposed approach in real-world denoising scenarios.

Our approach achieves remarkable performance on real-
world noise without even being trained on more expensive
real-world data. For a more complete study, we also con-
duct experiments on model training with real-world data
(for more details please refer to the supplementary mate-
rial), showing superior performance and even better gener-
alisation ability to data out of the training data distribution.

In Figure 4, the presence of noise persists even after
applying denoising techniques, yet ours demonstrates the
most authentic outcomes compared to others. For instance,
while the noise particles remain prominent in the N2C re-
sults, they are absent in our results. Overall, the results in-
dicate that the MeD approach is well-suited for real-world
denoising tasks, providing a robust and reliable solution for



Table 5. Multiple views (≥ 2) study, with average PSNR/SSIM.
#Views Gaussian LVG Poission Speckle S&P

2 29.61/ 0.8178 37.99/ 0.9568 48.10/ 0.9916 37.21/ 0.9715 42.33/ 0.9695
3 29.68/ 0.8197 38.05/ 0.9577 48.23/ 0.9920 37.40/ 0.9733 42.45/ 0.9703
4 29.70/ 0.8204 38.08/ 0.9580 48.31/ 0.9921 37.47/ 0.9740 42.49/ 0.9709

Table 6. Average PSNR/SSIM of super-resolution results on Set5
[6]. Learning-based methods are trained with Corruption Pool.

Scale Bicubic RCAN [37] DASR [30] MeD (ours)

×2 33.63/ 0.9285 36.12/ 0.9339 36.98/ 0.9471 37.12/ 0.9527
×3 30.37/ 0.8652 34.15/ 0.9286 34.11/ 0.9187 34.92/ 0.9294
×4 28.35/ 0.8084 31.94/ 0.8871 31.54/ 0.8736 32.50/ 0.8956

improving image quality in challenging environments.

4.6. Expand to More Views

Although we only showcase two views for the experi-
ments above, our method can be easily expanded to mul-
tiple views. To investigate the impact of the numbers of
views, here we further conduct a study comparing 2, 3, and
4 views, in Table 5.

The results indicate that increasing the number of views
consistently improves the performance across different
noise types. For example, when dealing with Speckle noise,
the 4-view model achieves a 0.26 dB higher PSNR than the
2-view model. However, it is worth noting that employing n
views requires n! cross-computations within each view pair
during training, resulting in a significant increase in com-
putational cost (e.g. from 2-view to 4-view leads to a 10×
training time increase in our experiment).

4.7. More Application Exploration

Here we investigate the potential of the proposed MeD
for other more general image restoration tasks, such as im-
age super-resolution and inpainting. In this study, we gener-
alise the previously defined degradation (noise) to a resid-
ual image between a clean image and a corrupted image.
Moreover, we expand the definition from Noise Pool to a
more general one – Corruption Pool that contains not only
noise but also general corruption.

Super resolution. Image super-resolution aims to enlarge
the resolution of a low-resolution image. We train our
method on the DIV2K dataset [3], where we randomly
choose different downscale methods from a Corruption
Pool that consists of random Gaussian noise and four types
of down-scaling (bicubic, lanczos, bilinear, and hamming).
We benchmark our method against the supervised method
RCAN [37] that aims for high PSNR and the recent unsu-
pervised methods DASR [30] that are specialised for super-
resolution. We conduct our evaluation on the Set5 dataset
[6] with scaling factors of 2, 3, and 4. The results in Table 6
show the effectiveness of our method over both supervised
and unsupervised approaches.

Table 7. Average PSNR/SSIM of inpainting results on Set11 [29].
S2S and DIP are trained and tested on the same single image. MeD
is trained with Corruption Pool.

Dropping Ratio DIP [29] S2S [27] MeD (Ours)

50% 33.45/ 0.9217 34.91/ 0.9479 36.24/ 0.9617
70% 28.53/ 0.8501 30.94/ 0.8845 31.05/ 0.9161
90% 24.39/ 0.7360 25.97/ 0.7933 26.01/ 0.8052

Inpainting. We also apply our method to the image in-
painting task, which fills in missing pixels. We choose
two single-image deep learning methods – Self2Self (S2S)
[27] and DIP [29], for comparison. Our MeD is trained
with Corruption Pool containing noises, down-scaling, and
inpainting mask operations altogether. To compare our
method (MeD) with other state-of-the-art methods, we con-
duct experiments on the Set 11 dataset [29] with three dif-
ferent pixel dropping ratios: 50%, 70%, and 90%. The re-
sults are shown in Table 7, suggesting the effectiveness of
MeD again in the image inpainting task.

5. Conclusion

In this paper, we have presented a new self-supervised
learning method (MeD) for image denoising that disentan-
gles scene and noise features in a constraint feature space.
Our approach has demonstrated exceptional denoising per-
formance in both synthetic and real-world noise scenar-
ios, with particularly significant performance on real-world
noise. MeD can handle complex noise with better per-
formance than other state-of-the-art methods, as validated
by consistent performance gain across various datasets and
noise types. Our approach has decent generalisation abil-
ity, requiring only noisy images for training and efficiently
denoising real-world noise without seeing any clean ground
truth data. This opens up new possibilities for training deep
models without the need for costly labelled data. Further-
more, our model can be easily adapted to other low-level
image restoration tasks. We hope this could provide a new
baseline for future research in image disentanglement and
the extension to other image processing tasks.
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