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Abstract. Contrastive learning (CL), which relies on the contrast be-
tween positive and negative pairs, has become the leading paradigm
in self-supervised learning. In this paper, we propose a self-supervised
learning framework, the feature-level Contrastive Rubik’s Cube Recov-
ery (CRCR). CRCR creates contrastive sub-cube pairs from ultrasound
video, which capture local spatio-temporal ultrasound features, unlike
traditional CL methods which are spatial and work at the global frame
level. This approach learns a representation with both intra- and inter-
feature contrast to provide strong local feature discrimination. The pro-
posed method is validated on two fetal ultrasound video tasks. Exten-
sive experiments demonstrate that our approach is effective for learning
representations that transfer to both in-domain (second-trimester) and
cross-domain (first-trimester) clinical downstream classification tasks. In
particular, CRCR outperforms four state-of-the-art contrastive learning-
based methods on the in-domain task by 3.8%, 2.0%, 1.9% and 1.1%,
with each improvement being statistically significant. Code is available
at: https://github.com/kangning-zhang/CRCR.
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1 Introduction

Ultrasound (US), due to its safety and portability, has become one of the most
common medical imaging techniques for fetal health monitoring in prenatal care
[1][20]. However, human annotation of fetal US images and videos could be ex-
pensive, and sometimes infeasible to obtain. Self-supervised learning (SSL) has
been applied to US analysis to achieve promising results in US diagnostic tasks
using a small amount of labelled data [18]. Most prior works focus on pretext
tasks applied to US images, aiming to learn representations through spatial
transformations [3][7][12][27]. As US scanning may include a video recording of
the US scan, some recent works explore SSL for the entire video instead of video
frames, to learn both spatial and temporal representations. Jiao et al. propose
a joint reasoning approach to learn representations from both order correction
and geometric transformation [10]. As contrastive learning (CL) has become one
of the leading paradigms of SSL [4], Chen et al. propose the US semi-supervised
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contrastive learning (USCL) method [5] and Zhang et al. design the hierarchical
contrastive (HiCo) learning method [26] for US video, which currently provides
state-of-the-art performance.

Most existing US video pre-training methods generate contrastive pairs us-
ing video-level data augmentations [7][5][26]. Two main types of augmentations
are spatio-temporal transformations (e.g. cropping, shuffling) and colour trans-
formations (e.g. solarization) [17]. Normally, augmented views from the same
video are referred to as positive pairs, and samples from different videos are
referred to as negative pairs. CL learns global representation by relying on the
representation invariant of positive pairs [4]. However, given the fact that fetal
US videos often share a global spatial pattern with significant local variations,
we are motivated to explore the use of local contrastive pairs generated from
sub-cubes of US videos for local representation learning.

In this paper, we address this issue by proposing a SSL framework Feature-
level Contrastive Rubik’s Cube Recovery (CRCR) for US video representation
learning. We introduce Rubik’s cube recovery (RCR) [29] and cube reconstruc-
tion [13], which are pretext tasks designed to learn spatio-temporal context by
image restoration, as effective tools to provide strong spatio-temporal distortions
and create contrastive pairs from sub-cubes of US video. Unlike recent methods
DiRA [8] and Swin UNETR [19], which leverage other pretext-tasks to CL frame-
works by directly combining the training objectives of each pretext task. Our
method, motivated by [22], provides a novel approach to generate both inter-
and intra-feature contrastive pairs based on the introduced pretext tasks. Here,
inter-feature pairs include sub-cubes from distinct US videos, and intra-feature
pairs include distinct distorted sub-cubes from the same US video. We hypothe-
sise that our approach could provide stronger local discrimination and enhance
local representation learning.

In summary, our main contributions are as follows: 1) We propose a SSL
framework, called feature-level Contrastive Rubik’s Cube Recovery (CRCR) for
fetal ultrasound video, which is customized to combine contrastive learning with
Rubik’s cube recovery and cube reconstruction; 2) We introduce an approach
to generate local contrastive pairs from sub-cubes of US video, which facilitate
discriminative and consistent local representation learning; 3) We empirically
compare the effect of using feature-level pretext tasks and stronger feature ex-
tractor (i.e. 3D Swin Transformer) to enhance feature learning; 4) The proposed
method CRCR consistently outperforms several existing SSL methods on both
in-domain and cross-domain US clinical downstream tasks, showing its effective-
ness and generalisability.

2 Methods

2.1 CRCR Framework

Suppose xi ∈ X ⊂ R1×H×W×K is a video clip in an US video dataset, where 1
represents the grey-scale property of US and H,W and K denotes the height,
width, number of frames in the video clip, respectively.
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Fig. 1: The pipeline of the proposed Contrastive Rubik’s Cube Recovery (CRCR)
framework, consisting of three pretext tasks: contrastive learning (the blue
block), cube reconstruction (the yellow block), and Rubik’s Cube recovery (the
green block). An example of our proposed local contrastive pair generation ap-
proach is demonstrated with a given anchor.

The overall framework of our method is illustrated in Fig. 1, which consists
of two encoders g(.) and f(.), one projection head h(.) for contrastive learning,
two MLP head r(.) and p(.) for Rubik’s cube recovery task and one decoder d(.)
for the cube reconstruction task.

Different from the normal CL paradigm [4], CRCR introduces two novel de-
signs for effective local representation learning. Firstly, we perform pretext tasks
on the feature level instead of the video level, and secondly, we proposed an
approach to generate local contrastive pairs from sub-cubes of US video. Since
the quality of US videos is always affected by the extensive presence of speckle
noises and acoustic shaded [11], whereas low-level information (i.e. boundaries)
and local noise could be discarded at the encoder features. It is worth consid-
ering operating pretext tasks at the feature level instead of the video level to
learn stronger and meaningful representations. As shown in Fig. 1, an input
US video clip xi is firstly partitioned into 2 × 2 × 2 sub-cubes {xi,j}8j=1, fol-
lowing the partition of Rubik’s cube. The sub-cubes of US video along with its
position embedding are then sent into the encoder g(.) to get sub-cubes of US
features {ri,j}8j=1. Distortions (Rubik’s cube transformation and reconstruction)
are operated on the obtained features. Local contrastive pairs are generated from
sub-cube of US features with the designed distortions, as in Sec. 2.2.

2.2 Training Objectives

Rubik’s cube recovery. RCR, which includes both rotation and permutation,
are operated on sub-cubes {ri,j}8j=1. Here, we define the set of permutations P =
{p1, p2, ...., pK} to have the largest Hamming distance for sub-cubes shuffling and
the set of rotations R = {r1, r2, ..., rM} to ensure either a horizontal or vertical
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flip for each sub-cube, maximising the distortion. Pk ∼ P and Rm,j ∼ R are
sampled. The transformed sub-cubes are denoted as {rTi,j}8j=1, with position
embedding updated to aligned with Pk. The predicted results lj and {gm,j}8j=1

are obtained from the rotation and permutation heads, respectively. RCR loss is
calculated as the sum of rotation and permutation loss as follows:

LRCR = −{
K∑

k=1

pkloglk +

8∑
j=1

M∑
m=1

rm,j loggm,j}. (1)

Cube reconstruction. Cube reconstruction is operated on the sub-cubes {ri,j}8j=1

and {rTi,j}8j=1, with the latter’s position embedding updated. The obtained re-
constructions are denoted as { ˜ri,j}8i=1 and { ˜ri,j

T }8i=1, with the latter’s position
embedding updated. The reconstruction loss is calculated as follows:

LReconst. = α1 ×
8∑

j=1

MSE( ˜ri,j , ri,j) + α2 ×
8∑

j=1

MSE( ˜ri,j
T , rTi,j). (2)

Contrastive learning. With the assumption that US videos share a global
spatial pattern with local divergence, we propose generating local contrastive
pairs using sub-cubes of US videos, instead of global pairs using the entire video.

Normally, CL considers different US videos as negative pairs, which might
result in the high similarity between negative pairs (i.e. videos from the same
scan or performing the same measurement task) and potentially mislead repre-
sentation learning [5]. The proposed approach is designed to generate two sets of
strongly discriminative negative samples I− = {I−intra, I

−
inter} by introducing the

aforementioned pretext tasks as effective distortion tools. We assume that rotat-
ing and shuffling the cube would cause severe spatial and temporal distortion,
resulting in the loss of both spatial and temporal information and leading to
poor-quality reconstruction. A Local positive samples set, I+, is generated with
appropriate similarities. For a given anchor sub-cube ri,j , the local contrastive
pairs generated from the proposed approach consist of:

– Positive sample I+ = {rTi,j , ˜ri,j}: rotated and reconstructed views of anchor
– Intra-feature negative samples I−intra = { ˜ri,j

T , ..., ˜ri,j
T }: distorted sub-

cubes from the remaining sub-cubes within the same video
– Inter-feature negative samples I−inter = { ˜rk,l

T }Nk=1̸=i,
8
l=1: distorted sub-

cubes from different videos

Those two sets of negative samples enable the model to learn representa-
tions from different perspectives. Inter-feature negative pairs enhance instance
discrimination, while intra-feature negative pairs provide local contextual infor-
mation. Referred to [4][25], we adapt NT-Xent for our contrastive loss function,
which is calculated as follows:
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LCLR = −
8∑

j=1

∑
i+∈I+

log
exp(φ(ri,j , i

+)/τ)∑
i−∈I− exp(φ(ri,j , i−)/τ)

= −
8∑

j=1

∑
i+∈I+

{φ(ri,j , i+)/τ − log
∑

i−∈I−

exp(φ(ri,j , i
−)/τ)}

(3)

where τ and φ(.) denote the temperature parameter and the pairwise cosine
similarity function, respectively.

Overall loss function. The overall learning target is a weighted combination
of Rubik’s cube recovery loss, reconstruction loss, and contrastive loss,

LCRCR = α× LRubik + β × LReconst. + η × LCLR. (4)

A grid-search hyperparameter optimization was performed which estimated
the optimal values of α = η = 1, β = 0.5.

2.3 Stronger Feature Extractor

We propose to replace the traditional convolutional neural network with a stronger
feature extractor. 3D Swin Transformer [14][23], as an effective transformer-
based backbone, is considered. In 3D patch partition module, we take a sub-cube
of size T

2 × H
2 × W

2 as the basic processing unit, which align with the partition of
a Rubik’s cube. A linear embedding is then applied to project the feature into a
C-dimensional space and a positional embedding, which would be updated with
the applied permutations, is added to retain sub-cube’s positional information.
The subsequent training stages follow the implementation described in [23].

2.4 Implementation Details

Both 3D ResNet-18 [9] and 3D Swin Transformers [23] are utilized as the back-
bone networks for the proposed self-supervised learning method. ResNet-18 is
chosen based on prior work [5][28], while Swin Transformer is chosen for its strong
feature extraction capability. We return each sub-cube to its embedded position
before passing it to 3D ResNet encoders to include positional information.

For SSL pretraining, we employ an AdamW optimizer [15] to be consistent
with [19]. Both networks are trained with a momentum of 0.9, a warm-up cosine
scheduler of 500 iterations and a mini-batch of 32 for 40 epochs. After parameter
tuning, an initial learning rate of 1 × 10−3 is used with decay of 0.1 for every
25K iterations for 3D ResNet-18 and an initial learning rate of 1× 10−3 is used
with decay of 0.01 for every 45K iteration for 3D Swin Transformer. All models
are implemented with PyTorch [16], with our methods taking around 180 hours
to run on a single NVIDIA Titan V GPU.
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For transfer learning, we fine-tune the combined encoder f(g(.)) along with
an attached classifier head. For the standard plane detection task, networks are
trained with SGD optimizer with momentum of 0.9 and mini-batch of 16 for
70 epochs. An initial learning rate of 0.01 is used with 0.1 decay at epochs
30 and 55. For first-trimester anatomies recognition, networks are trained with
SGD optimizer with momentum 0.9 and mini-batch 16 for 200 epochs. An initial
learning rate of 0.1 is used with a decay of 0.1 at epochs 150.

3 Results

3.1 Ultrasound Data

Our experiments are based on a large-scale fetal Ultrasound (US) video dataset
[6]. Full-length routine fetal ultrasound videos are recorded and sampled at the
rate of 30 Hz using a commercial Voluson E8 version BT18 ultrasound machine.
We consider a subset of the entire dataset for pre-training, in which only scan
recordings of the second trimester (gestational age of 18–22 weeks) are consid-
ered. The pre-training dataset consists of a total number of 70,661 video clips
(each of length 32, with 2,261,179 frames in total) from 719 US scan record-
ings. 135 second-trimester scans are selected for three-fold cross-validation on
the standard plane detection task, which consists of 15,384 labelled frames. A
subset of first-trimester scans is used for cross-domain anatomy recognition task,
which consists of 55,871 frames with 5 anatomy categories. All frames were cen-
tral cropped to remove the fan shape and resized to 224× 224 pixels.

3.2 Transfer Learning on Standard Plane Detection

Task description. We evaluate the pre-trained representation by transferring
it to the in-domain second-trimester standard plane detection task. Similar to
[2], 14 classes are considered, which include four cardiac views, three-vessel and
trachea (3VT), four-chamber (4CH), right ventricular outflow tract (RVOT),
and left ventricular outflow tract (LVOT), two brain views, transventricular
(BrainTv.) and transcerebellum (BrainTc.), two spine views, coronal (SpineCor.)
and sagittal (SpineSag.), abdominal, femur, kidneys, lips, profile and background
class. Precision, recall and F1-scores as used as the evaluation metrics.

Results. Table 1 shows a quantitative comparison of fine-tuning performance
on the standard plane detection task. The table indicates that CRCR generally
outperforms four state-of-the-art CL-based methods, i.e. SimCLR [4], DiRA [8],
USCL [5], and HiCo [26], by 3.8%, 1.9%, 2.0% and 1.1%, respectively, in F-1
score with the 3D ResNet backbone. Additionally, CRCR improves the perfor-
mance of SimCLR and Swin UNETR by 3.7% and 1.9%, when using 3D Swin
Transformer as the backbone. These improvements are statistically significant
using the Wilcoxon signed-rank test [21], validating the effectiveness of our pro-
posed method. In particular, CRCR performs better with 3D Swin Transformer
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Table 1: Quantitative comparison of downstream task performance
(mean±std.[%]) on second-trimester standard plane detection task and
first-trimester anatomy recognition task. Rand. Init. indicates the 3D ResNet18
trained from scratch, and ‡ denotes the use of 3D Swin Transformer as backbone
network. The best results for each backbone network are marked in bold.
P-values are calculated between our CRCR results and the previous top-1 result
for each backbone network. Any p < 0.05 represents a statistically significant
improvement and is highlighted in green.

Standard Plane Detection Anatomy Recognition
Pretrain Method Precision Recall F1 Precision Recall F1
Rand. Init. 69.3±1.6 58.8±3.1 59.1±3.1 80.8±3.2 78.4±0.7 81.1±0.5
RCR [29] 70.0±0.8 66.3±3.5 66.4±2.3 89.2±1.4 88.6±1.6 89.5±1.7
SimCLR [4] 70.9±0.5 68.9±1.7 68.7±1.2 95.5±0.5 94.7±0.3 94.8±0.8
DiRA [8] 72.0±2.5 70.4±2.3 70.6±2.3 95.7±1.4 95.3±1.3 95.1±1.2
USCL [5] 71.6±1.1 70.2±1.5 70.5±0.9 95.9±0.7 95.2±0.8 95.3±1.5
HiCo [26] 72.3±1.7 71.7±1.9 71.4±2.0 96.3±0.3 95.7±0.7 95.8±0.9
CRCR (ours) 73.1 ±2.3 72.6±2.7 72.5±2.2 96.8±1.2 96.1±1.4 96.2±1.8
P-value 0.048 0.021 0.010 0.018 0.027 0.035
SimCLR[4]‡ 72.8±0.8 70.7±1.2 70.7±1.6 95.9±1.3 95.3±0.8 95.1±1.5
SwinUNETR[19]‡ 73.6±1.2 73.2±3.5 72.5±2.1 96.7±2.7 96.9±2.4 96.5±2.3
CRCR (ours)‡ 74.9±2.5 74.8±3.0 74.4±2.6 97.1±2.3 97.1±1.6 97.2±1.3
P-value 0.003 0.001 <0.001 0.042 0.062 0.009

as the backbone network, demonstrating the benefit of utilising a stronger fea-
ture extractor to enhance feature learning. Supp. Table 1 presents the F1-score
for each class, in which CRCR owns the best performance in the majority of
classes. The improvement is particularly notable for cardiac views, which share
a global heart perspective but each has a local focus on specific structures, mak-
ing them difficult to distinguish even for experts. This finding is in line with our
assumption that by contrasting local contrastive pairs, the proposed method can
learn semantically meaningful information from these local areas.

3.3 Transfer Learning on First-Trimester Anatomy Recognition

Task description. We explore the generalisability of the pre-trained repre-
sentation to a cross-domain first-trimester anatomy recognition task. Similar
to [24], five key anatomy categories are considered, which include crown rump
length (CRL), nuchal translucency (NT), biparietal diameter (BPD), 3D-mode
(3D) and other (BK) for first-trimester fetal biometry measurements.

Results. Table 1 demonstrates quantitative results of fine-tuning performance
on the first-trimester anatomy recognition task. From the results, we observe that
our proposed method achieves the best performance among all the compared
methods with both 3D ResNet and 3D Swin Transformer as backbone networks.
Most improvements are statistically significant with paired t-tests. This task of
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Table 2: Ablation studies on the effectiveness of each self-supervised objective
and the effectiveness of performing pretext tasks at the feature level. Experi-
ments are fine-tuned using 3D ResNet for the standard plane detection task.

Feature-level Video-level

LCLR LRubik LRec Precision Recall F1-score Precision Recall F1-score
✓ 71.2 69.4 69.5 70.9 68.9 68.7

✓ 70.4 66.7 66.4 70.0 66.3 66.4
✓ 70.3 66.1 65.8 69.8 64.2 64.5

✓ ✓ 70.9 69.0 68.5 70.6 68.5 68.1
✓ ✓ 72.3 71.1 70.9 71.4 69.7 69.8
✓ ✓ 71.8 70.5 70.3 71.0 69.5 69.1
✓ ✓ ✓ 73.1 72.6 72.0 72.4 71.1 71.3

anatomical recognition could be challenging due to the small fetal size in the first
trimester. While the compared CL-based methods focus on global representa-
tion learning, CRCR leans local patterns through local contrastive pairs, which
could be valuable when the clinical region-of-interest is small. Among the com-
pared methods, USCL and HiCo, which are designed specifically for US videos,
perform better than those designed for general computer vision. Supp. Table
2 shows the F1-score for each anatomy category, in which CRCR achieves the
highest F1 scores in all categories. This finding demonstrates the effectiveness
and generalisability of our proposed method CRCR on first-trimester US video.

3.4 Ablation Study

Efficacy of self-supervised objectives. We perform an empirical study on
pre-training with different combinations of self-supervised objectives used in
CRCR loss. Results are shown in Table 2. An improvement could be seen by
adding pretext tasks, with the combination of contrastive learning and Rubik’s
cube recovery task as the best-performing pairing. These results indicate that
three selected tasks harmonize with each other and the proposed collaborative
learning methods enhance representation learning and downstream performance.

Efficacy of feature-level pretext task. We investigate how performing pre-
text tasks at the feature-level impacts representation learning compared to the
video level. As illustrated in Table 2, performing pretext tasks at video level
degrades the performance of the standard plane detection task to feature level.
This aligns with our hypothesis that performing pretext tasks at the feature
level enables the model to be less sensitive to superficial changes and focus more
on informative regions, as local noise and irrelevant features could be discarded
through encoder optimization.
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4 Conclusion

In this paper, we present a novel self-supervised learning method named feature-
level Contrastive Rubik’s Cube Recovery (CRCR) for local representation learn-
ing of fetal US video. The proposed method leverages the advantages of con-
trastive learning with Rubik’s cube recovery task and cube reconstruction task.
A local contrastive pair generation approach is introduced to contrast sub-cube
pairs from US video. Through extensive experiments, it is demonstrated that
CRCR achieves state-of-the-art performance on both second-trimester standard
plane detection task and first-trimester anatomy recognition task and signif-
icantly improves the quality of learnt representation in pre-training for both
in-domain and cross-domain downstream tasks. In the future, the proposed ap-
proach can be potentially applied to other medical imaging modalities.
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