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ABSTRACT

Articulated objects are ubiquitous in daily life. Our goal is to achieve a high-
quality reconstruction, segmentation of independent moving parts, and analysis of
articulation. Recent methods analyse two different articulation states and perform
per-point part segmentation, optimising per-part articulation using cross-state cor-
respondences, given a priori knowledge of the number of parts. Such assump-
tions greatly limit their applications and performance. Their robustness is reduced
when objects cannot be clearly visible in both states. To address these issues, in
this paper, we present a new framework, Articulation in Motion (AIM). We infer
part-level decomposition, articulation kinematics, and reconstruct an interactive
3D digital replica from a user—object interaction video and a start-state scan. We
propose a dual-Gaussian scene representation that is learned from an initial 3DGS
scan of the object and a video that shows the movement of separate parts. It uses
motion cues to segment the object into parts and assign articulation joints. Subse-
quently, a robust, sequential RANSAC is employed to achieve part mobility analy-
sis without any part-level structural priors, which clusters moving primitives into
rigid parts and estimates kinematics while automatically determining the number
of parts. The proposed approach separates the object into parts, each represented
as a 3D Gaussian set, enabling high-quality rendering. Our approach yields higher
quality part segmentation than previous methods, without prior knowledge. Ex-
tensive experimental analysis on both simple and complex objects validates the
effectiveness and strong generalisation ability of our approach. Project page:
https://haoai-1997.github.io/AiM/.

“Motion is the cause of all life.”

Leonardo da Vinci

1 INTRODUCTION

Everyday environments are abounded with articulated objects”, composed of multiple rigid parts

linked by joints ( , ) (e.g. doors with revolute joints and drawers with prismatic joints).

Modelling of such objects is valuable for practical apphcatlons across scene understanding ( ,
; , ), robotics ( , ), mixed reality (MR) (

; , ), and embodied AI appllcatlons ( s ; , ).

Advances in neural 3D representations ( ; , ;
, ) enable high-fidelity object-level 3D reconstructlon however reconstructmg part-level
structure, articulation dynamics, and functionality of articulated objects remains challenging.

Substantial efforts have been devoted to building 3D physics-consistent and interaction-ready asser-
tions of articulated objects from RGB or RGB-D observations ( , ; s ;

*Equal contribution. TCorrespondence: e . ofek@bham. ac . uk. *Equal advice.
“In this work, we only discuss the human-made articulated objects with rigid parts.


https://haoai-1997.github.io/AiM/

Published as a conference paper at ICLR 2026

X

-
‘o

Start End DTA ArtGS GT Ours

w
3

Figure 1: Left: Prior two-state methods often degrade on the sequences from closed-start to open-end. Right:
Results of the proposed AIM, compared to ground truth (GT) geometry.

s ). Some approaches ( ; ; s )
rely on the parameters of known joints in learnmg artlculated shape representatlons However, col-
lecting such data at scale can be time-consuming and often has limited generalisation to previously
unseen objects. To mitigate these issues, some unsuperv1sed part-level reconstruction methods have

been proposed ( s ; s ). Most of
them assume multi-view observatlons of the ob]ects in two dlstmct articulation states, denoted as
start and end states. ( ); ( ) recovered a deformation field between

the NeRF-based start-state and end-state geometries. However, optimisation is unstable and highly
sensitive to initialisation. Similarly, the 3D Gaussian splatting (3DGS) based method ( ,
) learns a per-Gaussian start-to-end deformation field, enabling static-dynamic segmentation
of up to one moving part per step. As deformation is defined over all Gaussians, threshold-based
separation is prone to noise. Lately, given a known number of articulated parts, DTA ( ,
) simultaneously reconstructs a start and end point cloud, predicts per-part segmentation prob-
abilities, and estimates articulation parameters via linear blend skinning ( , ) to align
the parts across the two states. Meanwhile, ArtGS ( s ) constructs start and end Gaus-
sian sets and uses their geometric correspondence to initialise a canonical mid-state Gaussian set. It
then learns part-centre locations, predicts Gaussian-to-part assignments ( , ), and
optimises per-part articulation following the blend skinning ( , ). Although effective,
these two-state methods degrade substantially when the number of articulated parts is unknown (as
shown in Fig. 2), and their stability is limited by the reliance on geometric correspondence between
the two states. Specifically, the commonly used two-state input setting has inherent limitations:
Many articulated objects cannot be well represented by only a start and an end state. When the end
state reveals regions absent in the start state, breaking cross-state correspondence (e.g. the interior
of a refrigerator or oven, as shown in Fig. 2), these methods are prone to degraded segmentation.

In this paper, we introduce Articulation in Motion (AIM), a new framework that reconstructs the
geometry, segmentation, and kinematics of articulated objects by analysing a video of their articu-
lated motion, which is simple, practical, and better aligned with the way humans learn articulation
through continuous interaction (Fig. 3) rather than using isolated start and end states. Furthermore,
continuous motion cues avoid cross-state correspondence failures when the end state reveals newly
seen regions (see Fig. 1 and Fig. 2). We do not assume a known number of articulated parts, any
prior knowledge of their joint types or motion parameters, or visibility along the entire motion. We
recover the articulation parameters stably for interactive manipulation. It comprises three stages (see
Fig. 3 and Fig. 5): I) 3DGS is used to reconstruct the initial geometry and appearance. II) We in-
troduce a dual-Gaussian scene representation, which contains the pre-built start-state Gaussian and
a deformable 3DGS, which tracks motion on the interaction video. A pre-built start-state Gaussian
is gradually pruned as a static base, achieving dynamic-static disentanglement based on the motion
cues. III) Depending on the trajectories of only-moving Gaussians, an optimisation-free sequen-
tial Random Sample Consensus (RANSAC) clusters them into rigid parts and estimates per-part
articulation parameters without any part prior. Our contributions are summarised as follows:

» We present Articulation in Motion (AIM), which reconstructs part-level articulated objects, with
extracted joints, based on a video that shows the objects’ degrees of freedom. It opens a way to
use interactive natural videos for reconstruction.
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* We propose a dual-Gaussian representation to disentangle the statics and dynamics, and track the
moving primitives. Additionally, we introduce a static-during-motion detection module to handle
newly revealed but static regions during interaction.

* Our method achieves robust part segmentation and articulation estimation using Sequential
RANSAC, without any structural prior.

* Extensive experiments demonstrate that our method can independently segment stably and accu-
rately moving parts of the object, reconstruct the geometry and articulation parameters of each
part, and its appearance, under challenging scenarios.

2 RELATED WORKS

Articulated object reconstruction from videos or images. This work focuses on articulated ob-
jects, composed of rigid parts and connected by joints. For such objects, research has focused
primarily on improving piecewise rigidity, identifying part-level mobility, and enabling control-
lable 3D model generation. REACTO ( s ) reconstructs the canonical object state,
represented by NeRF, and learns a deformation field with enhanced part rigidity from a captured
video. However, REACTO reconstructs articulated objects as a single unified surface, without
part-level geometry, which limits physically realistic interaction. ( );

( ); ( ); ( ); ( ) proposed to reconstruct articu-
lated objects at the part level and estimate joint parameters from multi-view RGB/RGB-D obser-
vations of two different articulation states, i.e. the state before interaction and the end state after
interaction. PARIS ( , ) learns a deformable field that applies two inverse mo-
tion parameters to a hypothetical intermediate-state NeRF. Similarly, REArtGS ( , )
builds on 3DGS to learn a static-to-dynamic deformation field for the intermediate state and iden-
tify the dynamic part. Both are limited to objects with one moving sub-part. To support multi-
ple movable parts, ( ); ( ); ( ) directly predict part-
wise segmentation probabilities for each point and learn the motion parameters per part to con-
struct the cross-state correspondence fields, similar to linear blend skinning ( , ).

Part mobility analysis. Part mobility
analysis typically involves part segmenta-
tion and articulation estimation, e.g. joint
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(2022); (2024);
( ) leverage advanced network archi-

tectures to predict part mobility directly
from a single RGB image or a motion
video, while ( );

( ; ) jointly predict part-
level 3D segmentation and per-part mo-
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Figure 2: Left: DTA and ArtGS fail to recover from an in-
tion properties from a single point cloud correct input nurpber of parts (4 here) and result in over-
- segmentations; Right: Visual results of DTA and ArtGS with
To reduce the dependence on annotated closed-start and open-end states. The static part is gray and the
datasets, recent work has explored unsu-  moying part is green. In contrast, Ours requires no geometric
pervised solutions. A representative two-  priors and recovers accurate part-level segmentation from the
state-based plpehne ( , ;  continuous closed-start—open-end interaction process.

, ) predict the part segmentation probabilities for each point and the articulation param-
eters per part, supervised by the point correspondence field between 3D shapes of two given input
states. However, these methods depend on the input part number, lacking sufficient generalisation
to real-world scenarios with unknown structural details, e.g. for objects with unknown structural
details, optimisation becomes unstable. It often fails to converge to the correct number of parts (see
Fig. 2). Additionally, as shown in Fig. 2, capturing multi-view observations for two distinct states
can easily introduce ambiguities when cross-state correspondences are undefined for regions that
appear only in the end state, instead, inspired by ( , ; , ), which segment
point clouds using trajectories from registered sequences, our framework infers part-level structure
and articulation information from the motion trajectories in a single video. RSRD ( , ),
POD ( s ) and Video2Articulation ( ), use a similar video-based input,
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Figure 3: Overview of the first two stages: I) 3DGS start-state {G°} reconstruction from a multi-view RGB
scan. II) A deformable 3DGS {G™,t} tracks motion video, while joint optimisation prunes moving compo-
nents from {G°}. Pruned static Gaussian set {G; } encodes the static base. An SDMD module handles newly

revealed but static Gaussians. Together, these yield two separated Gaussian sets ({G; } and {G",¢}) for the
articulation analysis (Fig. 5).

but both focus on per-part pose tracking and require segmentation masks from pre-trained mod-
els. They cannot perform part segmentation autonomously, and the performance is fundamentally
bounded by the pre-trained segmentation models (see Fig. A7).

Dynamic Gaussian splatting. 3DGS ( , ) provides an explicit point-based represen-
tation, enabhng real-time, differentiable splatting-based rendering. As a result there is 1ncreasmg
interest in extending 3DGS to dynamic scene modelling (

s ; s ). ( ) tracks attribute changes of each Gau551an
primitive while ( ) learns an MLP-based deformation field from time and primi-
tive positions to represent scene flow. Additionally, several methods ( ,

, ) introduce more efficient representations to encode temporal and structural 1nf0rmat10n
and employ motion clustering strategies for compactness. Tracking all Gaussians is expensive, and
motion can reduce motion-based segmentation (see Fig. A14 in Appendix). Our dual-Gaussian de-
tects static parts of the geometry, represented by 3DGS, while moving geometry is tracked using
deformable 3DGS; clear dynamic-static disentanglement enables stable segmentation.

3 OUR METHOD

The proposed Articulation in Motion includes three stages. Stage I: We reconstruct a 3DGS model
(preliminaries e.g. 3DGS and Deformable 3DGS please see Appendix A.) of the object on an initial
static state {G%}. Stage II: Given a video in which parts of the object are moved, we propose a
dual-Gaussian representation (Sec. 3.1) that jointly optimises {G°} that models the static part of
the object and a deformable GS {G* ¢} that captures the moving parts of the object. Moreover,
an additional static-during-motion detection (SDMD) module handles the newly static parts that are
revealed during the video and adds them to the static part of the object. After obtaining {GM ¢} with
the time-dependent deformation, we infer the trajectories of each moving primitive and introduce
the sequential RANSAC to group the moving primitives in Stage III, achieve motion-based part
segmentation and articulation estimation (Sec. 3.2). The entire training is supervised solely by RGB
observations: the start-state scan and the monocular video frames. Below we describe AIM in detail:

3.1 DUAL-GAUSSIAN FOR DYNAMIC-STATIC DISENTANGLEMENT

To achieve motion-based part segmentation and articulation analysis, it is essential to accurately
describe the trajectories of Gaussian primitives based on the given motion video. Although D-
3DGS ( , ) can learn time-dependent deformation fields from motion cues in the
video, it assigns a displacement to all Gaussians, including static ones. This introduces noise that
may harm segmentation and articulation estimation, especially with multiple moving parts, where
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all-Gaussian trajectories confuse the part-level structure (see Fig. A14 in Appendix). To address this
issue, we propose a dual-Gaussian representation that comprises two sets of Gaussians to separately
model the static base body and the moving components in the given video. The methodology is
visually summarised in Fig. 3. Firstly, we train a vanilla 3DGS based on multiple views of the
object in a start state, namely {G°}, following Eq. 8. Subsequently, given the motion video, we
follow D-3DGS to initialise a moving Gaussian set {G™ ¢} and train it with Eq. 9, to make these
Gaussians capture the moving parts in the video and predict the spatiotemporal deformation field.
We jointly render and optimize both sets, {G} U {GM ¢}, directing {GM} to model motion cues
and removing these moving elements from {G°} to obtain the static base {gg }, achieving clean
dynamic—static disentanglement for subsequent part mobility analysis. Newly emerging regions,
initially captured by the moving Gaussian set, are identified by a static-during-motion detection
(SDMD) module, which locates locally rigid components, estimates their local rigid motions, and
reassigns them to the static set according to the predicted transformations.

Dual-Gaussian joint optimisation. Using the multi-view scan of the start state, we model the
object’s geometry and appearance via the original 3DGS pipeline. Following the standard train-

s

ing settings, we obtain a set of initial Gaussians gs(ui, SiyTiy 04, hi)i:l’ where N, denotes the
total number of Gaussians, including both static and dynamic components. Thereafter, we ini-
tialise a sparse point cloud and prepare to learn a time-indexed deformable Gaussian set, denoted
as {GM(p;,85,75), t};v ™. Then, we employ an MLP-based deformation network Fy alongside the
moving Gaussian set to capture the motion trajectory. Specifically, {G™ (15, sj,7;)} ;V ™ represents

the geometric priors in the canonical space, while the changes (6, d7) in the position and rotations
are learned by the deformation network as:

(5Nj7 5Tj) = FG(’Y(SQ(N‘]))/}/@))’ (D
where ¢ is the input time index, sg represents a stop-gradient operation, and + indicates the
position encoding ( , ). We employ the same network architecture as D-
3DGS ( ). To constrain the moving Gaussian set to encode only continu-

ously moving content in the video, while the start-state Gaussian set {G s } remains static-
focused, we jointly optimise these two Gaussian sets. As shown in Fig. 3, during the ini-
tial 10k iterations of the optimisation, we freeze all attributes of {G} except opacity o, while
{GM t} and the deformation network JFy are trained with the normal adaptive density control.
In this process, we progressively prune the moving elements of

{G®} as their opacity decreases over time to obtain the static LW /i
Gaussian set, namely {g;? 1 while {GM t} fits the moving =3 ; S A
components in the video (see Fig. A4). In the following itera-

tiable rendering on the combination of {G>} and {G", t=1"}, 4 g]

we supervise the total training process with the video frame at -

the corresponding timestep ¢t =%'. Since previously unseen ar- S =

eas in the start state, e.g. the interior structures of refrigerators, [ =
washing machines, and cabinets, will be captured by the mov-

ing Gaussian set, an SDMD detection module is introduced t0  Figure 4: Renderings of the start (left),
audit the moving Gaussian set and prevent static leakage. and end (middle) states.  Without

. . . . . . SDMD detection, some newly revealed
Static-during-motion detection. During the first 10k itera- ;. parts are wrongly associated with

tions, we freeze all position-related attributes of {G o }> allow-  he moving Gaussian set (right).

ing {G™,t} to thoroughly learn the moving parts while also

adapting to newly revealed static content (Fig. 4). Although such content becomes stationary once
revealed, it is often already occupied by moving Gaussians, which hampers the static set from learn-
ing this geometry. To address this, we introduce a static-during-motion detection (SDMD) scheme.
During joint densification and pruning, we perform trajectory inference for the moving Gaussians
{GM 't} every 2,000 iterations at t € {0, 0.5, 1}. We then apply sequential RANSAC with the Kab-
sch algorithm ( , ) and a fixed inlier threshold of 0.05 to the resulting trajectory
sequence to extract locally rigid motion patterns (details in Sec. 3.2). Groups whose motion magni-
tude falls below the preset threshold (defined in Sec. 3.2) are identified as static, and their Gaussian
primitives are reassigned from {G* ¢} to {Q;f }. Compared with a simple motion-distance filter,
our SDMD avoids misassignment near the joint axis (where motion trajectories are near zero).

tions, we unfreeze the static Gaussian set, and jointly perform
densification and pruning on both sets. Through the differen- &
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Figure 5: Stage III: Motion-based part segmentation and articulation analysis. As the clean {G M t} pro-
vides time-varying trajectories, Sequential RANSAC groups trajectories into rigid parts (multi-part supported)
without priors or optimisation, and directly outputs per-part articulation parameters. The green (top) and purple
(bottom) points are our predicted moving Gaussians.

3.2 MOTION-BASED PART MOBILITY ANALYSIS

Existing methods typically assume a known number of object parts to infer part mobility. In practice,
they input the ground-truth part count to establish cross-state correspondences, which then serve as
priors for clustering-based part segmentation. In contrast, our core idea is to understand the part
mobility based on the motion cues in the interaction videos. Once the dual-Gaussian representation
decouples the static base and dynamic components, we recover accurate, time-parameterised tra-
jectories for the moving Gaussian primitives over arbitrary time horizons with selectively sampled
timesteps. This enables motion-based part segmentation by clustering moving Gaussians with the
same motion patterns into rigid parts. Therefore, as shown in Fig. 5, based on the clean inferred mo-
tion trajectories, we introduce a simple, robust, purely analysis-based sequential RANSAC (

, ) to achieve the part segmentation and estimate articulation parameters. Built on
sequential RANSAC with Kabsch solver ( , ), AIM automatically recovers the
part number and its kinematic parameters, i.e. joint type, axis direction, and motion magnitude.

Part segmentation. From the time-dependent moving Gaussian set {G ¢} with learned deforma-
tion field Fy, we can infer the centers positions of moving Guassian at timestep ¢ as P; = { ,u%}fv:l
Furthermore, we can easily obtain the one-to-one corresponding trajectory between timestep ¢ and
t’, recorded as {P;_,+}. To extract rigid parts, we employ a sequential RANSAC with a Kabsch
solver ( , ). Unlike conventional start-end matching methods (f =0 v.s. ¢ = 1) or pre-
trained segmentation-driven approaches, which require structural priors from manual input or pre-
trained models, our method aggregates evidence across trajectories spanning multiple time windows
to capture diverse motions and improve robustness. For one trajectory of time window {P,_,;}, the
optimal rigid transform is estimated by Kabsch solver, as

(R to) = argmin » - [|ulf — (Rl + t)[|°, (2)

it
1€Smin

where Spiy is a randomly sampled minimal set. The residual error of each moving Gaussian {GM }
is defined as:

err; = ||y — Ry i+t )l 3)

A Gaussian giM is accepted as an inlier if err; < €;;,. After Ngmpling iterations, the largest consen-
sus set is selected as the support set. The motion parameters (R, t) are subsequently re-estimated
from all inliers using the Kabsch solver to obtain one motion hypothesis. The identified inliers are
removed, and the process is repeated on the remaining Gaussians. The procedure terminates when
no valid support set is found, when the maximum iteration budget Npax iter 1S reached, or when the
largest inlier set is small. This sequential RANSAC yields a collection of support sets, each cor-
responding to one rigid part. In this work, to balance accuracy and efficiency, we simultaneously
employ the trajectories of two time windows, Py_,0.5 and Py_1, and compute the mean residual
error across them to determine inliers, as:

+ 3l — (RE pio + t51)11- 4)
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Per-part articulation parameters estimation. With the selected support sets, we employ the Kab-
sch algorithm to estimate the rigid transformation {(Ry,tx)} ;, K is the number of support
sets, i.e. the number of parts. Furthermore, we extract the underlying articulation parameters to
characterise the motion. We follow existing works ( s ; ; s ) and
focus on the following joint articulation parameters: the joint axis position p, joint axis direction
u, translation distance @, rotation angle ©, and joint type (prismatic or revolute). According to
Rodrigues’ rotation formula ( R ), the rotation matrix Ry, can be expressed as:

Ry = cos Ol + sin O [ug]« + (1 — cos O ) (ug @ ug), (5)

where direction uy is a unit vector, I is the identity matrix, [-] is the cross product and ® is the
outer product. From Eq. 5, we can obtain the uj and Oy, respectively, as:

Rk[Q,l] —Rk[l,Z] .
u; = ; (Rk[O,Q} — Rk[2,0}> , O = arccos (tr(Rk)l> . (6)
2sin @k Rk[L 0] _ Rk [07 1] 2

For the translation distance ® and the position p (start point) of joint axis, we can calculate them
based on the rotation matrix Ry, and translation component t;, as:

uk.-tk.

k= , Pr=Rp —I)7" (p - uy, — ). (7

[ [

For the joint type, inspired by ( , ; , ), we classify it as revolute when the
rotation degree © exceeds a threshold €,..,,; = 10° (about 0.17 radians) and prismatic by contrast.
Based on this, in static-during-motion detection, a region in a moving Gaussian set is considered
static if the rotation angle © < 0.1 radians and translation magnitude ¢ < 0.05 units.

4 EXPERIMENT

4.1 DATASET, METRICS, AND IMPLEMENTATION

Dataset. We select various articulated objects from PartNet-Mobility ( , ). We rendered
a video of articulated motion using a camera trajectory around the object. To verify the effectiveness
of our prior-free part segmentation, we render objects with multiple parts moving simultaneously
in a variety of motions. For two-state baselines, we render 100 random upper-hemisphere views
of the start and end states, respectively. Our benchmarks include challenging 8 two-part objects,
2 three-part objects, and 2 multi-part objects. Most interior parts are gradually revealed over time,
reflecting real-world applications. (Additional examples are provided in the Appendix C.)

Metrics. We conduct comparisons from three perspectives: 1) Part segmentation performance. To
consider the points inside the surface, we voxelize the meshes and evaluate part-level segmentation
with 3D Intersection-over-Union (IoU) ( R ); 2) Reconstruction quality. Following
prior works, we compute the bi-directional Chamfer Distance (mm) to measure the reconstruction
quality; 3) Articulation estimation accuracy. Following prior works, We report the Axis Ang Err
(°), Axis Pos Err (0.1m), and Part Motion (° or m). (More details please refer to Appendix B).

Implementation details. We evaluate against recent state-of-the-art methods, PARIS " DTA, and
ArtGS, that use RGB—Depth inputs. Our approach requires an RGB video with 200 frames for two-
and three-part objects and 500 frames for more complex objects. We present a baseline, Ours-b,
which replaces the proposed dual-Gaussian representation with a single deformable 3D Gaussian
shape (3DGS). Following ArtGS, we use a truncated signed distance function (TSDF) volume for
mesh reconstruction, render depth maps, and marching cubes ( , ).

4.2 QUALITATIVE AND QUANTITATIVE EVALUATION

Part segmentation. As shown in Tab. 1, our method attains the best 3D IoU on almost all objects
in both two-part and multi-part settings. On complex objects, the gains are large, e.g. on Storage
(6 moving parts), our mean dynamic-part IoU exceeds the prior SOTA by +27.11%. Standard devi-
ations are consistently lower, indicating greater stability than two-state inference (e.g. DTA/ArtGS
on Fridge, Oven). Compared with Ours-b, the dual-Gaussian dynamic—static separation further im-
proves accuracy by suppressing static interference.

TPARIS is augmented with depth supervision
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Table 1: Part segmentation performance on articulated objects. (a) Two-part; (b) Three-part; (¢) Complex
objects. For two-part objects, 3D IoU(%) is reported as mean=tstd over 10 trials, while for three-part and
complex objects, we report mean 3D IoU(%) over 10 trials. D4 represents the average over all movable
parts. F' denotes failure. Higher is better, with the best highlighted in bold.; Gray means two-state methods.

(a) Two-part objects

Two-part objects

3D IoU (%) 1 | Method |

| | Fridge | Oven | Scissor | USB |  Washer | Blade | Storage
PARIS | 85231920 | 92.19:633 | 83.13437 F 98.53, 045 | 87.841060 | 86.7313.18
Static DTA 86.27 16.58 91.114350 66.01+338 86.30+1.84 | 88.49110.04 | 83.2249,03 88.87+1.84
Part ANGS | 87.69110.46 | 94.551376 | 84.701407 | 88.624030 | 94.514a04 | 90914157 | 88.6840 6
Ours-b | 83701470 | 94464231 81.274984 | 55.15+14.06 F 83.5941.41 88.57 +3.07
Ours 88.01. 637 | 97724052 | 92424105 | 92931130 | 96984290 | 84334165 | 91.41li07s
PARIS | 559719962 | 45.42443.00 | 67.81+15.00 F 32.75490.62 | 344241085 | 42.88+16.99
Dynamic DTA 52.06192.20 | 41.23102.06 | 53.58+7.44 79.81+9.71 5.97 1564 279241162 | 39.01410.74
Part ArtGS | 58.78136.40 | 65.6810450 | 75.0419.69 86.851037 | 35.62436.43 | 28.95416.08 | 65.3019.66
Ours-b | 57.09417.60 | 72.5049.45 | 77.744375 | 55.36414.52 41.7643.34 | 35.54126.04
Ours | 751941461 | 89.61:150 | 92.2141.19 | 91951118 | 68.52113580 | 43.9246.97 | 69.011742
PARIS | 70.60119.40 | 68.8010511 | 75.4719.0 F 65.64 114314 | 61.131664 | 64.81410.08
DTA | 69.1641356 | 66.17 41275 | 59.79 15 83.05.006 | 47.2316.80 | 55.5746.80 | 63.941457
Mean ANGS | 73.24493.40 | 80.12114 79871619 | 87.7312.10 | 650642021 | 59.931882 | 76.99+6.17
Ours-b | 70.40411.13 | 83484586 | 79.514326 | 55.26414.51 F 62.6849.47 | 62.06413.79
Ours | 816011045 | 93.66.009s8 | 9231112 | 92441124 | 827541799 | 64024429 | 80211737

(b) Three-part objects (c) Complex objects

| 3DIoU | PARIS-m | DTA | ArtGS | Ours | 3DIoU (%) | DTA | ArtGS | Ours
S 89.77 88.53 | 92.23 | 94.20 S 87.95 | 93.32 | 97.01
Storage | Do . 5532 | 5178 | 94.95 Storage 5. Doy 2638 | 5223 | 79.34
47024 Dy 60.72 | 96.00 | 79.75 Mean 35.18 | 58.14 | 81.87
S 89.55 81.05 | 94.80 | 95.42 S 89.81 | 90.44 | 91.75
Fridge Do 25.73 55.28 | 88.53 | 89.95 Tablez ;249 Daug 37.29 | 38.07 | 43.92
11304 Dy 45.31 61.19 | 80.48 | 91.42 Mean 47.80 | 48.55 | 53.49

Table 2: Mesh reconstruction comparison. (a) Two-part objects; (b) Three-part objects; (c) Complex objects.
For two-part objects, we report CD distance (mm) as mean=.q across 10 trials. For three-part and complex
objects, we only report the mean value, while we report average CD for movable parts. Lower () is better.

(a) Two-part objects

Metric | Method | Two-part objects

| | Fridge | Oven | Scissor | USB | Washer | Blade | Storage
DTA 3.1940.80 9.10+3.59 9.4141.00 2.0440.12 5.0313 44 0.3310.00 4.94 1014
CD-S ArtGS 1.58 .28 8.39 1929 0.80+0.99 11.0140.43 6.6310.17 1.2340.01 7.5040.15
Ours-b | 4734053 10.0841.43 2224107 34.6141.73 1.90+0.06 727 +0.78
Ours 3.45.40.09 10.364.0.73 0.14..00 1544014 9.2510.99 1.76.10.02 7.09+0.49
DTA | 4.08:060 | 77.61ss6.50 | 141.9943550 | 1.90.05 | 481.064¢651 | 19304000 | 67.332503
CD-m | ArGS | 43514047 | 64341505 | 537140852 | 50.0041077 | 155.65 19079 | 473724760 | 6.9210.54
Ours-b | 18.2744.92 51749254 73.13450.33 19.4640.46 F 110.46436.00 | 88.85+73.10
Ours 2.2140.18 1.63.0.25 0.2710.03 0.8910.10 21.03.+1.02 2.360.00 18.95.12 57
(b) Three-part objects (c) Complex objects
| | | PARISm | DTA | AnGS | Ours ‘ 1 | DTA | ArGS | Ours
CD-s 8.05 3.20 3.58 10.37
Storage | CD-Dy . 275.87 | 253.60 | 0.81 Storage CD-s 2.08 296 | 2.63
47024 | CD-D; 287.70 | 121 | 27.35 8C47648 CD-mgyg | 200.15 | 71.17 | 8.36
CD-s 6.91 4.90 293 8.16 = <
Fridge | CD-Dy | 29829 | 2995 | 12.83 | 3.85 Table; 240 CD-s 256 | 3.65 | 3.08
11304 | CD-Dy | 189.85 | 323.06 | 12.17 | 212 CD-mgyyy | 152.93 | 51.40 | 4.99

Mesh reconstruction. We report mesh-reconstruction results in Tab. 2. Despite using RGB-only
inputs, our CD on static parts is competitive with PARIS and ArtGS, and our errors on dynamic
parts are much lower e.g. Storagesr¢as: 8.36 vs. 71.17 (ArtGS); Table: 4.99 vs. 51.40.

Articulation estimation. Our framework attains highly accurate joint predictions (see Tab. 3). For
two-part objects, our axis-angle errors are consistently minimal (e.g. Oven: 0.27° vs. 5.39° of DTA).
For complex objects, the improvements are striking: on Storage, we reduce axis-angle error from
12.78° (ArtGS) to 0.58°, and part motion errors to nearly zero (0.02 for prismatic joints). This
evidences the advantage of dual-Gaussian representation and motion-based fitting.

Analysis of two-state limitations. From qualitative and quantitative results, it can be observed that
two-state methods strongly rely on geometric correspondence between the start and end states. Once
this correspondence is broken, such as the open-end state reveals interior regions absent from the
close-start, these methods are forced to match dissimilar geometry, leading to degraded part segmen-
tation and unstable articulation estimation. Most notably, on two-part objects such as the fridge and
oven in Fig. 6, the newly revealed interior structures cause the canonical mid-state Gaussian initial-
isation in ArtGS to fail. This disturbed canonical initialisation propagates to articulation estimation
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Table 3: Quantitative evaluation of articulation estimation. (a) Two-part; (b) Three-part; (c) Complex
objects. For complex objects, we report the average of all moving parts. Due to the different magnitudes of part
motion for revolute and prismatic joints, we report both of them. F' denotes failure. WT denotes that more
than 6 out of 10 trials result in an incorrect joint-type prediction. — indicates prismatic joints w/o rotation axis.

(a) Two-part objects

Method |

Two-part objects

Metric
\ |  Fridge Oven | Scissor | USB | Washer | Blade | Storage
Axis DTA 1.86.3.50 5391716 1.014 23 0.229 14 17.34 195509 | 1.6540.35 | 8.1846.80
Ang ArtGS WT WT 2.3941.01 23.86135.02 WT 1.3140.14 | 0.0040.01
Ours-b 6.7643.40 3.3643.31 5.1240.46 6.6544.20 F 0.2544.20 | 1.7240.67
Ours 2704173 0.27 10,25 1.60+0.38 0.5910.30 1631090 | 0.184017 | 1.5240588
Axis DTA 1.7541 20 4.98 1438 8.8414.76 0.019.0 26.50142.41
Pos | AnGS WT WT 1731170 6.0145 60 WT - -
Ours-b 1224086 1.24 1086 0.8610.55 0.8410.37 F - -
Ours 0.86.-0.34 1131068 0.7510.05 1454071 1124029 - -
PARIS 167.60414.49 | 144.80111.20 | 122.05142.50 F 86.1313.11 0.0810.06 | 0.1040.02
Part DTA 171.77 11343 | 1421043362 | 150.50+11.29 0.320.15 76.43111.27 | 0.0240.00 | 0.07+0.06
Motion | ArGS WT WT 99.091 6715 | 120.054 1963 WT 0.1450.00 | 0.0040.00
Ours-b 10.6713.49 7.6441 77 5.2040.40 16.94 11 85 F 0.251490 | 1.7210.67
Ours 6.76.3.40 3.36-3.31 5124046 6.654.20 6901253 | 0.010.00 | 0.0210.00
(b) Three-part objects (c) Complex objects
[ Methods [ Do ‘ D
| | Axis Ang | Axis Pos | Part Motion | Axis Ang | Axis Pos | Part Motion ‘ + ‘ Angaug ‘ Posequg ‘ Motiony,,, ‘ Motionj,,,
DTA 58.63 38.59 96.56 0.50 0.01 Storage | ArtGS 12.78 3.34 81.93 0.18
Storage | ArGS | 20.63 3.83 107.56 175 0.13 o | Ours | 058 131 10.56 0.02
47024 Ours 0.56 1.26 1.66 1.03 - 0.06
T o T e P —— — Table | ArGS | 33.19 ‘ 242 ‘ §2.29 ‘ 0.43
Fridge | ArGS 13.94 46.95 176.52 333 1579 41.81 s129 | Ours | 119 0.81 1.10 0.01
11304 Ours 0.68 3.58 3.57 1.67 0.68 4.81
Start ¢+ End Start End

Ours Ours
Figure 6: Qualitative results of part segmentation and articulation estimation on two two-part objects (fridge,
left; oven, middle) and a complex multi-part object (Storage-47648, right). For complex object, each predicted
joint axis is visualised using the same colour as its corresponding part segmentation mask. Across the two-part
objects, DTA and ArtGS often struggle with mis-segmentation and inaccurate joint-axis/type predictions. In
contrast, our method produces clean part segmentation and consistent joint-axis estimation across all objects.

and results in joint-type errors, often predicting a prismatic joint instead of the correct revolute joint.
By contrast, DTA is relatively more stable due to its symmetric optimisation of both the start-to-end
and end-to-start transformations, yet it still misclassifies newly revealed structures, e.g. predicting
the oven interior as dynamic or assigning large portions of the moving fridge door to the static part.

Summary. Overall, compared to two-state motion inference, our method demonstrates stronger
and more stable performance under a challenging close-start/open-end setting. In the two- and
three-part datasets, Articulation in Motion achieves the best results on the vast majority of objects.
On complex objects, our approach shows a clear advantage, significantly surpassing prior methods
(more visualisations in Appendix D and Fig. A4). For mesh reconstruction, while our approach
still has limitations in overall mesh fidelity compared with NeRF-based methods, the strength of
our part mobility analysis enables consistently superior reconstruction of dynamic parts over prior
state-of-the-art methods.



Published as a conference paper at ICLR 2026

Table 4: Ablation studies on complex objects. We report the average metrics of dynamic parts. And we
calculate the mean across three trials.

Ang,,y | Posequy . Motion], | Motion?,

avg avg

| CD-mg, | 3DIoUD 1

avg

ArtGS 12.78 3.34 81.93 0.18 71.17 5223
w/o start state scan 1.57 1.49 20.61 0.05 97.65 37.60
Storage w/o SDMD 2.62 1.41 14.72 0.06 91.52 77.45
47648 w/o dual-GS 2.95 1.77 15.36 0.08 17.43 67.66
w/o RANSAC 3.80 1.41 12.62 0.38 78.54 67.06
Full 0.58 1.31 10.56 0.02 8.36 79.34
ArtGS 33.19 242 82.29 0.43 51.40 38.07

w/o start state scan F
Table w/o SDMD 11.62 1.49 23.74 0.21 18.05 37.10
31249 w/o dual-GS 1.49 0.94 1.47 0.37 6.26 41.74
w/o RANSAC 1.28 0.91 1.25 0.37 6.02 40.65
Full 1.19 0.81 1.10 0.01 4.99 43.92

4.3 ABLATION STUDY

Effectiveness of start state scan. As shown in Tab. 4, while directly training the dual-Gaussian
representation with a set of random Gaussians as the static, 3D IoU” avg drops from 79.34% to
37.60%. On Table, the pipeline cannot detect the moving Gaussians. These results indicate that the
start state can anchor the shape and appearance of objects and is essential for capturing motion cues.

Effectiveness of the static-during-motion detection (SDMD). Disabling SDMD consistently
harms dynamic geometry and motion recovery. In particular, the sharp increase in CD-mZ g 0
both storage and table shows that the filtering of static noise during motion capture is critical to part

mobility analysis. (More visual results please see Fig. A13 in Appendix.)

Effectiveness of the dual-GS representation. We assess the dual-Gaussian representation by
replacing it with the original deformable-3DGS. Across metrics, articulation accuracy and part-
segmentation IoU degrade markedly without our dual-Gaussian representation. This confirms that
explicit dynamic—static disentanglement is a cornerstone for prior-free part mobility analysis. (More
visual results please see Fig. A14 in Appendix.)

Effectiveness of sequential RANSAC. We first attempted prior-free density clustering with DB-
SCAN ( , ), which failed to produce valid partitions across objects. We then applied
K-means ( , ) with the provided part count, yielding reasonable groups but infe-
rior articulation and segmentation. In contrast, sequential RANSAC delivers the best prior-free
performance while remaining robust to motion variability. Given our accurate motion trajectories,
K-means outperforms ArtGS, underscoring the quality of our motion cue extraction.

5 CONCLUSION AND LIMITATION

Conclusion. In this work, we presented a compact pipeline, Articulation in Motion (AIM), to
achieve a prior-free and stable part-mobility analysis. Compared to previous works based on two-
state shape correspondence, our method utilises more natural motion and human-object interaction
videos as input. It introduced a dual-Gaussian scene representation to analyse motion cues in the
video. With the dual-Gaussian dynamic—static separation, we obtained clean motion trajectories;
coupled with the robustness of sequential RANSAC, this enables prior-free part segmentation and
articulation on unseen objects. Comprehensive experimental evaluations validated the effectiveness
and stability of the proposed AIM in diverse challenging scenarios.

Limitations and future work. Our AIM generates higher quality segmentation of articulated ob-
jects and recovery of their degrees of freedom (DoF) compared to prior work. We do not require
the use of depth sensing, as done by most prior art techniques; however, we do utilise a video
that captures the DoFs of the object’s parts. Such a video contains more information than a three-
dimensional reconstruction of the object at the start and end states. Yet, in many common cases, this
is easier to capture compared to the former type of data: some objects contain many DoFs, and some
are dependent on each other, making it hard to capture all of them with only two static states. The
capture of a video is a more natural way for a person to introduce an object, where they can expose
each DoF at a time. Capturing the whole geometry of internal parts, such as drawers, an extended
blade of a knife, or the blades of a pair of scissors, requires the full disassembly of the articulated
object. The generated geometry is limited to the visible geometry and, as such, may be limited in
its application for developing interactive models. Future work may utilise a data-driven approach to
complete such parts of the whole geometry, given a dataset of these parts.
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APPENDIX

This is the appendix for the main paper. Here is a general roadmap describing the contents of each
part of this document supporting the main paper:

e In Section A, we first review the core 3DGS ( , ) and Deformable 3DGS (
, ) formulations to unify notation and provide the foundational baseline for our dual-
Gaussian representation in the main paper.

* In Section B, we detail three evaluation aspects: part segmentation, reconstruction quality, and
articulation estimation accuracy .

* In Section C, we provide additional details to our rendered datasets, which include the detailed
splits/statistics and representative multi-view examples.

» Section D provides more experimental results, including more visual comparisons among

DTA ( , ), ArtGS ( s ) and ours (Section D.1), more
quantitative and qualitative results compared with pre-trained segmentation driven method
Video2Articulation ( , ) (Section D.2), more results compared with DTA and ArtGS

under the open-start and open-end setting (Section D.3). Sec. D.4 details our real-world data ac-
quisition and preprocessing pipeline, and reports visual results.

* Section E provides additional qualitative results for the ablation study.

A PRELIMINARY

3D Gausssian splatting 3DGS represents the scene as an explicit point-based 3D structure, en-
abling orders of magnitude faster reconstruction and rendering. In this work, we build on 3DGS to
reconstruct the articulated objects with the part-level structures. In details, each 3D Gaussian G; is
defined by a center position y; € R?, opacity o; € R, a covariance matrix 3; parameterized by a
3D scale 5; € R? and a rotation r; € R*, as well as spherical harmonics (SH) coefficients h; for
view-dependent color modeling ( ). Given image captures of the scene, we optimise
a collection of Gaussians {G} = {G;} Y, via blendlng -based differentiable rendering:

i—1

1 _
7= ZczToﬂD aF” (u) = osexp(— (u—?”) 8P (w— i), T = [[(1-a3”), @®)

j=1

where 122 and $2P denote the 2D projections of the 3D center y1; and covariance matrix ¥, respec-
tively; u represents the pixel coordinate; and c; is the colour of G;, determined by the SH coefficients
h; and the view direction. T; represents the transmittance from the start of rendering to G,.

Deformable 3D Gaussian splatting. To model the time-varying changes of geometry and appear-
ance in a dynamic scene, Deformable-3DGS ( , ) introduces a learnable deformation
field to model temporal transformations in the centre positions u, rotations r, and scales s of 3D
Gaussians. This deformation field is parameterised by a multi-layer perceptron (MLP), which pre-
dicts offsets based on time and the canonical Gaussian G... Specifically, at time step ¢, the deformed
Gaussian G is defined as:

Ga(pis 8is7inois hi) = Ge(ps + g, 53 4+ 08,173 + 07, 04, ), )

where the offsets 0y, ds, dr are given by Fy(v(t),v(u;)), with Fp representing the deformation field
and ~ denoting the positional encoding function. With differentiable rendering, both the Gaussian
parameters and the deformation network parameters are jointly optimised. Here, we only consider
the time-varying transformation of position §x and rotation dr.

B METRICS AND EVALUATION DETAILS

We evaluate from three perspectives consistent with the main text: (1) part segmentation via 3D IoU
on voxelized meshes, (2) reconstruction quality via bi-directional Chamfer Distance (mm), and (3)
articulation estimation accuracy via axis and motion errors.
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1. PART SEGMENTATION PERFORMANCE (3D IoU)

For each predicted part and its ground-truth (GT) counterpart, we voxelize both meshes onto a shared
binary occupancy grid (identical bounds and voxel size). Let VP and V9 be the sets of occupied
voxels. The part-level segmentation score is

o vrnvy|

I _
U = %oovs)

(10)
as in prior work ( s ).

2. RECONSTRUCTION QUALITY (CHAMFER DISTANCE, MM)

We uniformly sample points on the surfaces of the predicted and GT meshes and compute the sym-
metric (bi-directional) Chamfer Distance in millimetres. For point sets X and Y,

1 . 1 .
CD(X,Y) = m%{%@@*yﬂz + ml;gé@y*ﬂfﬂz- (11

We report CD for the whole object (CD-w), the static parts (CD-s), and the movable parts (CD-m).

3. ARTICULATION ESTIMATION ACCURACY

For each dynamic joint, we report three metrics:

Axis Ang Err (°). Let a?,a% € R? be the unit axis directions (predicted and GT). The angular
error (orientation-invariant) is

0 = min{ arccos(a”-a?), 180° — arccos(dp«dg)}. (12)

Axis Pos Err (0.1m). Let the axes be lines £7(s) = o 4+ sa? and ¢9(t) = 09 4+t a9. The shortest
distance d between two 3D lines is used, and we report it in units of 0.1m by
](dpxdg) - (oP — 09)|

AxisPosErr = 10 x d, d = ~ ~
farxar]

(for non-parallel axes), (13)
and d = ||(09 — o) x aP|| for (nearly) parallel axes. This metric is reported for revolute joints only.

Part Motion (° or m). Between the start state t=0 and end state t=1, we measure the state error:
(i) revolute: geodesic angle on SO(3) between the predicted and GT relative rotations ARP =
RY(RH)T and ARY = RY(R)) T,

¢ = arccos(%) . 180°. (14)

T
(ii) prismatic: Euclidean difference between relative translations AP = ¢} — 5 and At9 = t{ — t7,

s = ||At? — AtY]|; (meters). (15)

C DATASETS

C.1 SYNTHETIC DATASET

We build a dataset to evaluate motion segmentation under increasing difficulty. Detailed splits and
statistics are reported in Table A1, Table A2, and Table A3. Each scene contains a start (static) state,
a continuous motion segment, and an end (static) state. We also provide visual examples from the
dataset. Fig. Al shows a two-object scene with 100 multi-view images for the start state, 200 for
the motion segment. Fig. A2 shows a three-object scene with the same counts: 100/200. Fig. A3 is
a complex object scene with a longer motion segment: 100/500.
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Figure A2: Examples from the Three objects dataset
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Table Al: Motion type and motion records across ten scenes on the Two-part objects dataset

S Blade Fridge Oven Scissor Stapler Storage USB Washer
cene 103706 10905 101917 11100 103111 45135 100109 103776

Motion type  Translate Rotate Rotate Rotate Rotate Translate Rotate Rotate

Motion 0—05 —110°—=0° 0°—90° 45°— —45° 0°— —-80° 0—0.5 0°— —-90° 0°— —60°

Table A2: Motion types and ranges extracted from the two scenes of the Three-part objects dataset.

Scene  PartID Motion Type Range Part ID  Motion Type Range

lljrllél(z);j 0 Rotate 0 — —180° 1 Rotate 0° — —90°
S‘:;)(r)z%le 0 Rotate 0° — 90° 1 Translate 0—0.7

Table A3: Motion types and ranges extracted from two additional scenes of the Complex objects dataset.

Scene  PartID Motion Type Range Part ID  Motion Type Range

Stor. 0 Rotate 0 — 120° 1 Rotate 0— —120°
4;’61‘58‘3 2 Rotate 0 — —60° 3 Rotate 0 — 60°
4 Translate 0—0.1 5 Translate 0—0.16
Table 0 Translate 0— 0.38 1 Translate 0.35 =0
31249 3 Rotate 0— —90° 4 Rotate 0 — 90°

==

Start State Motion End State

Figure A3: Examples from the Complex objects dataset
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Table A4: Comparison results with Video2Articulation ( R ). We report four metrics, i.e. Axis
Ang (°), Axis Pose (0.1m), CD-m (mm) and CD-s (mm). Especially, for two-part objects, we report the metrics
as mean ¢4 across 10 trials. For a three-part object, we report the mean value on different moving parts. Fail
represents that Video2Articulation fails to detect the correct part segmentation masks, and (%) shows the failure
rate. Bold means better performance.

Method Two-part Three-part
Fridge Storage USB Washer Fridge (Joint0) ~ Fridge (JointI)

Axis Video2Articulation | 3.80+0.00 6.5310.00 1.8940.00 Fail (100%) 2.17 1.35
Ang (0) Ours 2.7011 73 1-5210.88 0.5910,30 1.63:&0_90 1.67 0.68
Axis Video2Articulation | 0.951¢.00 — 0.1219.00 Fail (100%) 0.71 1.92
Pose (0.1m) Ours 0.86.(.34 — 1.45.0.71 11240 99 0.68 3.58
CD-m Video2Articulation | 8.061016 141.9511202 24.681049 Fail (100%) 2.88 41.38
(mm) Ours 2.2110_18 18.95;&2_57 0.89:&0_10 21.0311_02 2.12 3.85
CD-s Video2Articulation | 7.2149.12 8.60.10.47 101.421 972  Fail (100%) 44.45 44.45
(mm) Ours 3-45i0.09 7~09i0.49 1~54i0.14 9~25i0.99 8.16 8.16

D ADDITIONAL RESULTS

D.1 ADDITIONAL RESULTS ON OUR DATASET

As shown in Fig. A4, we provide more rendering results of our AIM. Additionally, we provide more
visual comparisons among DTA, ArtGS, and ours. As shown in Fig. A5 and Fig. A6, we compare
the rendering quality with ArtGS, and compare the part segmentation performance with DTA and
ArtGS. Especially, all the results are with the start state and generated with the estimated motion
parameters. From the results, we can see that our method achieves more stable and accurate part
mobility analysis. Furthermore, the point clouds in Fig. A6 are presented to show the geometry
recovery.

ePp= s

1 1

1 1

1 1

| i - i

p— / X L.d’ :

Laptop 10211 Ovenjp1917 E E
@ I I
<7 -

1 1

1 1

N 1 1

Washer 03776 Foldchairpo055 Storage 7004 Storage 7648

Figure A4: Rendering of our dual-Gaussian representation (left: static result {RS }, right: moving result
{RM ™11, All objects (category,,yume.) are from PartNet-Mobility dataset ( , ).

D.2 ADDITIONAL COMPARISON WITH PRE-TRAINED SEGMENTATION DRIVEN METHOD

As introduced in Sec. 2, our work primarily focuses on self-contained methods, namely approaches
that can independently perform part-level mobility analysis without relying on any externally pre-
trained segmentation models or segmentation-mask pools. Therefore, we select PARIS, DTA, and
ArtGS as our baselines. Furthermore, motivated by the inherent limitations shared by these two-
state-based methods, we propose AIM, which leverages motion cues from common close-to-open
interaction videos to achieve part prior-free mobility analysis without any structural priors.

To further demonstrate the effectiveness of our method beyond the self-contained setting, we
additionally report both quantitative and qualitative comparisons against the recent pre-trained
segmentation-driven approach, Video2Articulation ( ). Since Video2Articulation
requires preprocessing through Monst3r ( ) and AutoSeg-SAM ( ), we
directly use the overlapping subset of objects provided in their released dataset. Specifically, we
evaluate on four two-part objects (Fridge-10905, Storage-45135, USB-100109, Washer-103776)
and one three-part object (Fridge-11304) and reproduce the official codes using the official settings.
These results could be found in Tab. A4 and Fig. A7.
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Figure AS5: Rendering results based on articulation estimation parameters for the start state of two-part objects:
Top (fridge): From the visualisation, it can be observed that the newly seen interior content severely influences
the performance of ArtGS’s articulation estimation, causing the door located inside the body. Bottom (oven):
Similarly, during opening the oven, the newly seen content could not be well aligned between the two states,
leading to wrong axis estimation and joint type estimation. The handle moves into the oven.
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(b) DTA (c) ArtGS (d)Ours

Figure A6: Qualitative comparison between DTA, ArtGS and ours, w.r.t. GT.
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moving static Pre-trained segmentation mask moving part sfg:]ﬁrs\tatlon

Video2Articulation

Ours

Figure A7: Visual results of Video2Articulation ( ) (Left) and ours (Right) (Notably, as the
expensive pre-processing process of Video2Articulation, we directly use their released dataset to reproduce
Video2Articulation, there is some colour difference). Left: From the visualisations, we observe that the
pre-trained-segmentation—driven Video2Articulation method fails to predict correct moving parts when the
underlying pre-trained segmentation models cannot provide reliable masks. Typical failure cases include mis-
segmenting the drawer and its cabinet, or losing track of the inside of the refrigerator door once it opens. Right:
In contrast, our approach performs part mobility analysis by directly exploiting motion cues from the interac-
tion video. After achieving clean static—dynamic separation, we apply multi-model fitting based on the inferred
motion patterns, which leads to consistently more robust and accurate results.

Table AS: Quantitative evaluation of articulation estimation under the open-start and open-end condi-
tions. (a) Two-part; (b) Three-part; (c) Complex objects. For complex objects, we report the average of all
moving parts. Due to the different magnitudes of part motion for revolute and prismatic joints, we report both
of them. — indicates prismatic joints w/o rotation axis.

(a) Two-part objects

Metric | Method | Two-part objects

\ | Fridge | Oven | Scissor | USB | Washer | Blade | Storage
Axis DTA 0.0840.03 | 0.1040.04 | 0.0540.02 | 0.8310.49 2.054120 | 0.4140.11 | 0.1440.07
Ang ArtGS | 0.0040.00 | 0.01.10.00 | 0.0710.00 | 0.01:0.00 | 0.0310.02 | 0.0240.00 | 0.0010.00
Ours | 0.1940.08 | 0.0610.03 | 0.2110.01 | 0.2040.06 | 0.05£0.02 | 0.0310.01 | 0.0510.02
Axis DTA 0.01+£0.00 | 0.0640.03 | 0.0110.00 | 0.0310.02 3.05+4.31 - -
Pos ArtGS | 0.00+0.00 | 0.01+0.00 | 0.00L0.00 | 0.000.00 0.00+0.00 - -
Ours | 0.0410.02 | 0.0540.04 | 0.0040.00 | 0.0240.01 | 0.0240.01 - -
Part DTA | 0.1240.04 | 0.2040.00 | 0.0410.02 | 0.66+0.38 | 12.13111.07 | 0.00+0.00 | 0.00+0.00
Motion | ArtGS | 0.0140.00 | 0.04+0.00 | 0.0540.00 | 0.00+0.00 | 0.0340.00 | 0.0040.00 | 0.00+0.00
Ours | 0.7940.34 | 0.4640.16 | 0.5810.05 | 1.1940.07 | 0.1010.04 | 0.00x0.00 | 0.00+0.00
(b) Three-part objects (c) Complex objects
‘ Methods ‘ Do ‘ D | | | Angayy | Poseq,, | Motion],, | Motion?,,
Axis | Axis | Part | Axis | Axis | Part Storage | ArGS | 1018 | 043 1091 ]
Ang | Pos | Motion | Ang | Pos | Motion woss | Ours | 008 ‘ 0.24 162 ‘
DTA 0.09 | 0.02 0.07 0.32 — 0.00 Table | ArtGS | 0.02 ‘ 0.00 0.01 ‘
Storage ArtGS 0.04 | 0.00 0.01 0.05 - 0.00 31249 Ours 0.36 0.00 0.27
47254 Ours 0.18 | 0.05 0.22 0.05 - 0.00
DTA 0.26 | 0.01 0.19 0.18 | 0.01 0.26
Fridge ArtGS 0.02 | 0.00 0.01 0.00 | 0.00 0.05
10489 Ours 0.09 | 0.01 0.42 0.06 | 0.04 0.85
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Table A6: Mesh reconstruction comparison under the open-start and open-end condition. (a) Two-part
objects; (b) Three-part objects; (c) Complex objects. For two-part objects, we report CD distance (mm) as
mean=g.q across 5 trials. For three-part and complex objects, we only report the mean value, while we report
the average CD for movable parts. Lower () is better.

(a) Two-part objects

Metric ‘ Method ‘ Two-part objects

\ | Fridge | Oven | Scissor | USB | Washer | Blade | Storage
DTA 0.6210.02 | 4591013 | 0.711051 | 3194107 | 1.6941.10 | 0.80£0.10 | 2.78£0.04
CD-S ArtGS | 0.5040.00 | 4741002 | 0.8210.23 | 2.5810.01 | 0.9610.01 | 0.710.00 | 4.65+0.03
Ours | 0.5310.00 | 4594018 | 0.5710.00 | 2.9540.13 | 0.854£0.01 | 0.7210.00 | 5.84+1.60
DTA 0.3040.01 | 0.4710.01 | 0.4610.13 | 3.5241.02 1.3840.65 | 3.2840.33 | 0.4040.00
CD-m | ArtGS | 0.2740.00 | 0.5240.00 | 0.7940.25 | 2.2740.05 | 0.27+0.01 | 2.80+0.14 | 1.6140.02
Ours | 0.2510.00 | 0.6310.06 | 04910.00 | 1.3320.04 | 0.3240.01 | 0.7540.01 | 2.9410.31
(b) Three-part objects (c) Complex objects
| | | DTA | ArGS | Ours ‘ ! ‘ ArtGS ‘ Ours
CD-s 1.01 0.95 1.58
Storage | CD-Dy | 0.49 | 025 | 0.18 Storage gy | o2 1.52 ‘ 1.64
47254 | CD-D; | 1.11 | 041 | 046 CD-mgyg | 3.89 | 4.36
CD-s 2.66 1.97 2.12 Table CD-s 2.11 2.08
Fridge | CD-Dg | 3.56 | 1.26 | 1.26 1249 | CD-mgyy | 3.60 | 4.19
10289 CD-D; | 2.78 0.76 0.69

Figure A8: The Meta Project Aria Glasses.

D.3 ADDITIONAL RESULTS UNDER THE OPEN-START AND OPEN-END SETTING

As shown in Tab. A5 and Tab. A6, we evaluate all methods under the same input setting used
in ArtGS and DTA, namely, the open-start and open-end configuration. Meanwhile, we render the
sequences using the motion parameters provided by ArtGS. Under this setting, both ArtGS and DTA
achieve good articulation estimation, particularly because the geometric correspondence between
the two states is clear and the part number is known. This also makes the articulation estimation
of ArtGS stable, with almost zero variance in the evaluation of articulation estimation. Meanwhile,
without structural priors as input, our AIM also achieves accurate and stable articulation estimation
through dual-Gaussian—based dynamic—static disentanglement and robust motion-based Sequential
RANSAC. As shown in Tab. AS, Tab. A6, our results are comparable to these optimisation-based
baselines, and in challenging complex-object cases, AIM is more stable. Meanwhile, AIM’s part
segmentation, driven only by motion cues in interaction videos and without requiring the number of
parts, remains on par with or even surpasses recent state-of-the-art ArtGS.

D.4 ADDITIONAL RESULTS ON REAL-WORLD DATA
D.4.1 REAL-WORLD DATASET ACQUISITION

To better support natural human—object interaction during data capture, we leverage the Meta Project
Aria Glasses (as shown in Fig. A8) to record the interaction video. In detail, videos are recorded
in real time using the device’s built-in fisheye cameras while the user observes the target object and
manipulates its movable parts. As shown in the video, during the interaction process, the user first
walks into the scene and observes both the surrounding environment and the articulated objects in
their closed-start state. To achieve the automatic pipeline, the user then signals the beginning of
interaction by using the hand to touch the target object ( i.e. the oven). While manipulating the
movable part, the user freely moves the head to observe the object from different viewpoints. The
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hand is then removed to inspect the object again. The user subsequently touches another object
(i.e. the storage) and repeats the same manipulation-and-observation procedure.

Hand in

Hand out Hand in

Figure A9: The captured interaction videos (The video could be found in the Supplementary Material). In
particular, we use the hand as an indicator to automatically detect the motion start (hand in) and end times
(hand out), enabling a fully automated data-processing pipeline.

Figure A10: The estimated pose of real-world video via using COLMAP ( ).

For data processing, we first extract the recordings from the Aria glasses. Since the RGB cameras
on Aria glasses are fisheye cameras, we apply the official Project Aria toolkit ( , ) to
rectify each frame and re-project it into a pinhole camera mode. This produces a set of undistorted
pinhole frames along with their corresponding timestamps (see Fig. A9). We then extract keyframes
with FFMPEG and manually filter the frames to remove blurred or low-quality images. Finally,
as shown in Fig. A10, the curated images are fed into COLMAP ( s ) to
estimate camera poses via structure-from-motion, which are used as inputs for subsequent recon-
struction. Especially, we follow the process, introduced in video2articulation ( ), to
obtain the whole articulated object (i.e. oven and storage) via Grounded SAM?2 ( );

( ) with the two text prompts: “silver microwave” and “wooden storage”. The final
inputs to AIM consist of 100 start-state frames and 87 motion frames for the oven sequence, and
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77 start-state frames and 58 motion frames for the storage sequence. Although the number of mo-
tion frames is much smaller than in our rendered dataset, the following results show that ATM still
performs robustly and accurately under this limited motion input.

D.4.2 EXPERIMENTAL RESULTS ON REAL-WORLD DATA

As shown in Fig. A1l and Fig. A12, we present our results on the real-world captured sequences.
AIM performs robust and accurate part mobility analysis purely from RGB inputs, without any struc-
tural prior knowledge. Notably, AIM reliably predicts the correct joint-axis direction and achieves
low-error articulation estimation, such as the oven door’s nearly 85° opening motion, which is pre-
dicted as about 82°. Moreover, our SDMD module correctly reassigns newly revealed static regions
during motion, such as the oven interior. For the storage example, despite significant occlusion
from the oven and the user’s hand, AIM still produces correct part-level segmentation and articu-
lation estimation. These results further confirm the strong motion analysis ability of dual-Gaussian
representation and the generalisation capability of AIM in challenging real-world scenarios.

Limitations: From the real-world data, we observe that when motion introduces structural
ambiguities—particularly those caused by specular reflections, such as the glass door of the oven
in the video—our vanilla 3DGS-based reconstruction in AIM can be affected. In future work, we
plan to further address such challenges, for example, by incorporating depth information to improve
robustness under complex lighting and reflective surfaces. Moreover, as discussed in Sec. 5, we will
extend AIM to more diverse and larger real-world scenes in future work.

T e
E « Articulation Estimation

Rendered Rendered Results with
Results predicted masks

{G3:c = 0} : Static;

{GM:c = 1} : Revolute
{d=[0.298 0.939,0.171], ©6=1.409}.

GT

Figure A11: Qualitative results of our AIM on the real-world data of the oven. Left: Comparison between the
ground-truth views and rendered views. Besides, we provide the rendered masks based on our dual-Gaussian
representation (via directly changing the spherical harmonics of Gaussians). Due to the strong specular re-
flections on the oven’s glass door, the appearance of the moving part undergoes frequent and significant changes
during interaction. Despite this challenge, our dual-Gaussian representation still achieves clean dynamic—static
disentanglement by relying on stable motion cues. Moreover, the SDMD module reliably reassigns the newly
revealed static interior regions back to the static base as the motion unfolds, further improving the quality of
disentanglement and reconstruction. Right: Our prior-free part mobility analysis. Based on our dual-Gaussian
representation, we can easily infer the trajectories of moving Gaussians, and obtain the articulation parameters
based on the optimisation-free and robust sequential RANSAC without any prior structural knowledge.

E ABLATION STUDY

In Fig. A13, we present qualitative ablations by removing individual modules, highlighting the im-
portance of each component. As shown in Fig. A14, we also provide the comparisons between our
dual Gaussian representation and the deformable Gaussian. The dynamic-static disentanglement of
our dual Gaussian representation can better track the moving regions and support more accurate
trajectory-based part segmentation.
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{G5: c = 0} : static;

{GM:c = 1} : Prismatic
{d =[-0.289, 0.318, —0.903], ®=1.023}.

. Articulation Estimation

»
4
°

Figure A12: Qualitative results of our AIM on the real-world data of storage. Left: Comparison between the
ground-truth views and rendered views. Besides, we provide the rendered masks based on our dual-Gaussian
representation (via directly changing the spherical harmonics of Gaussians). Although large regions of the stor-
age are occluded by the oven and the hand during the interaction video (see Fig. A9), AIM remains robust and
accurately performs dynamic—static disentanglement, enabling clean separation of the static base and the mov-
ing part purely from motion cues. Right: Our prior-free part mobility analysis. Based on our dual-Gaussian
representation, we can easily infer the trajectories of moving Gaussians, and obtain the articulation parameters
based on the optimisation-free and robust sequential RANSAC without any prior structural knowledge. (No-
tably, for prismatic joint, we do not consider the axis pose).

Rendered Rendered Results with
Results predicted masks

Full w/o dual-GS w/o RANSAC w/o SDMD w/o start state scan

Figure A13: Qualitative comparisons for the ablation studies.

Deformable 3DGS Our Dual-GS

Figure A14: Part segmentation results based on Deformable 3DGS and our dual-Gaussian representation. We

cluster Gaussians using the same sequential RANSAC settings; colours denote groups. Static noise in De-
formable 3DGS noticeably degrades the segmentation.
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