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Abstract—Referring expression is a kind of language expres-
sion being used for referring to particular objects. In this paper,
we focus on the problem of image segmentation from natural lan-
guage referring expressions. Existing works tackle this problem
by augmenting the convolutional semantic segmentation networks
with an LSTM sentence encoder, which is optimized by a pixel-
wise classification loss. We argue that the distribution similarity
between the inference and ground truth plays an important
role in referring image segmentation. Therefore we introduce a
complementary loss considering the consistency between the two
distributions. To this end, we propose to train the referring image
segmentation model in a generative adversarial fashion, which
well addresses the distribution similarity problem. In particular,
the proposed adversarial semantic guidance network (ASGN)
includes the following advantages: a) more detailed visual infor-
mation is incorporated by the detail enhancement; b) semantic
information counteracts the word embedding impact; c) the
proposed adversarial learning approach relieves the distribution
inconsistencies. Experimental results on four standard datasets
show significant improvements over all the compared baseline
models, demonstrating the effectiveness of our method.

Index Terms—Image referring segmentation, Adversarial
training

I. INTRODUCTION

Although significant progress has been achieved on seman-
tic image segmentation, the more general and challenging task
of segmenting entities based on arbitrary natural language
expressions remains far from being solved. In this paper, we
study the problem of using natural language expressions to
segment an image. Given an image and a natural language
expression, we aim at segmenting out the corresponding region
referred by the expression, such as “White vehicle on the
right” shown in Figure 1. The expression always contains
the attributes and positions of the entities, like colors and
relationships. While being a new topic introduced by [1], [2]
recently, this problem has great value as it provides a novel ap-
proach for interactive image segmentation. For instance, users
can segment/select image regions of interest by typing natural
language descriptions or directly speaking to the computer
[3]. Thus, there is a great impetus to develop effective and
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Skier on the left.

White vehicle on the right.

Fig. 1: Given the input images (left) and corresponding re-
ferring expressions (below), our model is able to segment out
the referred regions (right). Two examples are shown with the
ground truth masks in the middle column.

accurate tool for the tasks involving photo editing, language-
based human-robot interface, and automatic-selected object
tracking.

Considering the success of convolutional neural networks
(CNNs) in semantic segmentation [4], [5], an intuitive ap-
proach to tackle this problem is concatenating the image
features produced by the semantic segmentation networks with
the sentence representation produced by an LSTM [6] sentence
encoder. Such sentence-to-image interaction scheme has been
widely adopted by existing methods on referring object local-
ization [7], [8], [9], [10], referring segmentation [1], [2], cap-
tion generation [11], [12] and cross-modal retrieval [13], [14].
However, the output of semantic segmentation is with low-
resolution compared to the input image, thus lacks detailed
structure information. Without detailed image information, it is
hard for the segmentation networks to identify the edges of the
target region, which leads to low performance of prediction.

Aiming at segmenting out the referred regions, referring
image segmentation is essentially a pixel-wise classification
problem based on pixel-wise classification loss. Despite dif-
ferences in the network architectures, a common property
among pixel-wise loss approaches is that the label of each
pixel is predicted independently from each other. However,
in practice the labels of pixels in an image are relevant.
If we regard each pixel independently, some information of
relevance between pixels is likely to lose. For example, some
kinds of objects have specific shapes. The predicted masks
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of humans should be solid and the masks of donuts always
contain holes. But the segmentation results of humans and
donuts may lose their characteristics when only optimized by
pixel-wise classification loss. The context of an image plays an
important role when we classify the pixels and improves the
performance of these prediction models by reinforcing spatial
contiguity. Instead of considering the similarity of pixels
independently, it is highly desirable to enforce spatial label
contiguity. In prior works, in order to improve the performance
of the independent prediction model, various post-processing
approaches have been explored. Some of the existing methods
build graph structures over the image by Markov Random
Field (MRF) [15] or Conditional Random Field (CRF) [16],
to capture the context of an image. In [5], post-processing
based on CRF on top of the deep network framework has been
adopted to refine pixel label predictions. However, this kind
of post-processing is rather time-consuming in testing phase
which is a restriction for real-time applications.

To address the above-mentioned issues, we propose ad-
versarial semantic guidance network (ASGN) to add more
detailed image semantic guidance and introduce a loss term
measuring the distribution similarity. Specifically, we con-
catenate the multi-scale features encoding image details to
the combined (with LSTM features) feature space by a skip
connection. In addition, as the combination of expression
features may introduce semantic ambiguity, the output features
of the backbone are connected to the final features before
the mask inference, to provide more semantic guidance. On
the other hand, besides the pixel-wise classification loss, we
introduce the adversarial loss term by adding a discriminator
following the mask inference network inspired by the genera-
tive adversarial network (GAN) [17] and previous work [18].
In particular, we minimize the difference between the distribu-
tions of the network prediction and ground truth by optimizing
an objective function. This function combines a conventional
cross-entropy loss with an adversarial term. The adversarial
term detects the inconsistencies between the two distributions
and encourages the referring segmentation model to produce
masks that cannot be distinguished from ground-truth ones.

The contributions of this work are summarized as follows:

• We propose adversarial semantic guidance network
(ASGN) for referring semantic segmentation, in which
the distribution similarity between the network inference
and ground truth is measured by a discriminative loss
term.

• We leverage multi-scale feature maps from the network
backbone to add more detailed visual information for
referring segmentation.

• We employ the semantic embedding after introducing
the language expressions so as to counteract the word
embedding impact.

• Our approach is general and can be embedded in any
other state-of-the-art framework for a further improve-
ment. In particular, we achieve competitive results upon
the baseline models [1], [2], i.e., 28.06% vs. 36.82% on
IoU.

II. RELATED WORK

In this section, we review the most related works to ours
in the following three areas: semantic segmentation, referring
expression localization, and adversarial learning.

A. Semantic Segmentation

CNNs have have made remarkable progress in the field
of image semantic segmentation [19], [20], [21], [22]. For
instance, FCN [4] converted the fully connected layers in
VGG network [23] into fully convolutional layers, for pixel-
wise dense labeling. However, the output segmentation map
was low in resolution – due to the involvement of pooling
layers that can increase the receptive field size rapidly after
several steps. As a result, a low-resolution label mask was
obtained. To address this issue, the mask can be up-sampled
using bi-linear interpolation [4], [24]. Other solutions pro-
posed to use dilated convolutions to increase the receptive
field size without losing resolution [5], [25], [26], [27], skip
connections to earlier high-resolution layers [4], [24], [28],
multi-resolution networks [29], [30], [31], or depth-adaptive
multi-scale convolution layer [32]. DeepLab [5] alleviated
this issue by discarding two pooling operations with atrous
convolution. With Residual network [5] as its backbone ar-
chitecture, DeepLab [5], [25], [28] was one of the leading
models on Pascal VOC [33]. Similarly, we utilize the DeepLab
architecture (with ResNet-101 as backbone) to extract image
features in a fully convolutional manner. Some of the existing
methods worked on post-processing of segmentation networks,
i.e.Markov Random Field (MRF) or Conditional Random Field
(CRF) aimed at finding a graph structure over the image [34],
[16], [35], [36], [37], [15]. Different from the post-processing
works above, we adopt an adversarial training framework
which introduces a discriminative loss as a complementary loss
in order to encourage the model to enhance pixel classification
accuracy.

B. Generative Adversarial Networks

Generative Adversarial Network (GAN) [17] was first in-
troduced to address the problem of image synthesis with
similar quality to real ones. The fundamental idea of GANs
was to play a minimax game by training two networks of a
generator and a discriminator. The generator tried to produce
more realistic image samples from random noise, while the
discriminator aimed to distinguish generated images from
the real ones. There were also many works that employed
GAN under conditions. For example, some works aimed
at generating images which were not only indistinguishable
from natural images but also matched the constraints from
the conditions. Previous works have conditioned GANs on
discrete labels, text, and, indeed, images. [38] first proposed
conditional GAN which can generate MNIST digits con-
ditioned on class labels. For conditioning on text format,
Reed et al. [39] proposed a deep architecture with conditional
GAN which can generate realistic images described by the
corresponding natural language. Zhang et al. [40] proposed
stackGAN which can produce images with a larger size than
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Fig. 2: Network architecture of the proposed ASGN model. It mainly consists of two parts: the generator (left) and the
discriminator (right).The generator employs the fully convolutional networks as the backbone to extract image features. We
extract feature maps from the network backbone (conv3, conv4 and conv5) as the multi-scale features (blue connection) to
enhance the details and then concatenate them with image feature (green block), language feature from LSTM (yellow block)
and spatial coordinates (orange block). Then, the fused features are fed into the following two convolutional layers. The semantic
features (red connection) are concatenated to the final features before the mask prediction to reduce the ambiguity introduced
by word embedding. After generating predictions, a discriminator is introduced to relieve the distribution inconsistencies. In the
discriminator network, we first re-size the predictions to the same size as the original images and then concatenate the original
image with the predicted masks and real masks respectively. After that, these two image stacks are fed into a classification
network with six layers.

before by given language expression. The image-conditional
models have tackled inpainting [41], hole-filling [41], image
manipulation guided by user constraints [42], product photo
generation [43], domain transfer [44], [45], [46] and style
transfer [47]. Different from previous works, we incorporate
the conditional adversarial training scheme into the referring
image segmentation task, in which the segmentation network
acts as the generator.

C. Referring Expression Grounding

Our work is related to recent work on object grounding with
natural language. [48] and [49] used image captioning models
[50], [51] to calculate confidence of each region proposal for
whether the region contained target object or not. The proposal
with the highest confidence was considered as the ground
truth result. [7] focused on incorporating better measures of
visual context into referring expression models and utilizing
the visual difference between objects within an image to help
improve performance. [8] used multiple-instance to discover
context regions and discover interactions between the object.
In [52], by reconstruction with attention mechanism, the
correspondence between the description and image region was
learned. These works aimed at grounding the target objects
instead of segmenting them out. The most relevant works
to ours are [1] and [2], which studied the same problem of
image segmentation based on referring expressions. Different
from the previous approaches, we propose ASGN model to
enforce the distribution similarity between the inference and
ground truth masks and detect mismatches to refine pixel label

predictions simultaneously as well as add more image detailed
semantic guidance.

III. MODEL

In this section, we first give an overview of the proposed
ASGN approach. Then we explain the proposed segmentation
network in detail. Finally, we present the generative adversarial
framework and introduce the loss function of the proposed
method.

A. Overview

In the task of referring image segmentation, an image I with
a natural language expression S are given as input. M̂ is the
pixel-wise prediction mask, and M is the corresponding real
pixel-wise segmentation mask. Here M̂ ∈ (0, 1) represents
the foreground probability of a pixel and M ∈ {0, 1}, where
1 means the pixel is referred to by S while 0 means the
background. The goal of this task is to segment the corre-
sponding region in image I referred by the expression S. To
achieve the goal, the key problem is how to understand both
visual and textual input and successfully separate the target
region from others. In this paper, we first propose a semantic
guided approach to enhance the image referring segmentation
by adding multi-scale features and semantic embedding. To
refine the prediction produced by the segmentation network,
we further model the network into a generative adversarial
framework by introducing a novel adversarial loss term. In this
framework, we regard the segmentation network as a generator
which generates the masks and the added discriminator is
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employed to distinguish those masks from the ground truth
ones. Formally, our proposed ASGN is to train a network
f(I, S; θ) parameterized by θ. The network parameter θ is
optimized by a pixel-wise classification loss and an adversarial
loss:

min
θ

(Lseg(f(I, S; θ)) + Ladv(f(I, S; θ))), (1)

where Lseg and Ladv are the loss functions of pixel-wise
segmentation and adversarial loss terms, respectively.

An overview of the proposed ASGN architecture is shown
in Figure 2. Our proposed framework mainly consists of two
parts: the generator (left) and the discriminator (right). Specif-
ically, the generator contains two components, i.e.semantic
guidance segmentation mask prediction and LSTM-based nat-
ural language expression encoder.

B. Segmentation Mask Prediction

First, we describe the generator which is employed to
produce the predicted masks. Following previous work [2],
our basic architecture includes the visual feature extractor and
a sentence encoder which are used to produce the image and
sentence representation, respectively. The visual extractor is
built upon the ResNet-101 or DeepLab-101. To allow the
model to reason about spatial relationships such as “person
on the right”, 8 spatial coordinates are also concatenated with
the extracted features. Then the concatenated tensor is sent to
two additional convolutional layers to predict the final seg-
mentation mask. Given the ground truth binary segmentation
mask, the pixel-wise classification loss function is defined as:

LCE =
1

WH

W∑
i=1

H∑
j=1

L
(
M ij , M̂ ij

)
, (2)

where i and j are the spatial coordinates, W and H are the
width and height of the predicted mask, with 1/8 size of the
original input image. This is set according to the downsam-
pling rate (8) of the segmentation network. Specifically, the
per-pixel cross entropy loss LCE in Equation 2 can be written
as follows:

LCE = − 1

WH

W∑
i=1

H∑
j=1

(M ij log(M̂ ij)

+ (1−M ij)log
(
1− M̂ ij

)
)

(3)

Even though the pixel-wise prediction generated from the
basic network performs well in previous work, it is still
ambiguous in marginal regions that cannot align with the
actual border. For instance, the body of a person is easy
to segment but the border of the arms and legs is hard to
align with the actual borders completely. To address the above
issues, we propose to add more detailed semantic guidance to
improve the edges of the target region. Particularly, we apply
two types of skip layer connections as shown in Figure 2:
Detail enhancement (the blue connection in Figure 2) and
Semantic embedding (the red connection in Figure 2).

Fig. 3: The structure of the LSTM-based language encoder.
This model takes the embedded word after a word embedding
matrix as input at each time step.

1) Detail Enhancement: In general, CNNs usually employ
several hidden layers to hierarchically learn multi-level repre-
sentation of images.In this paper, we propose to extract the
multi-scale features and concatenate them to the feature fusion
block (highlighted using circled green dotted line in Figure 2),
to enhance the image details. This is achieved by a skip
connection (blue connection in Figure 2) from the backbone
to the fusion block with the intermediate convolutional layers.
Specifically, the features from the conv3, conv4 and conv5
layer of the backbone are extracted as the multi-scale feature
guidance (more details on the selection of these layers please
refer to the experiments section). Additionally, we apply three
1×1 convolution layers on the extracted feature maps to reduce
the number of channels for purpose of avoiding outweighing
the importance of the rich features. Then, the features are
bilinearly downsampled to the same size of those to 1/8 size
of the original input image, which are later concatenated for
segmentation.

2) Semantic Embedding: In existing works, the inferring
segment mask is predicted directly from the fusion block
that combines image and natural language features. How-
ever, the natural language feature may introduce semantic
ambiguities, e.g., foreground and background with similar
expression descriptions. To better model the semantic infor-
mation, we propose to use a semantic embedding to provide
further guidance for the referring mask prediction, as shown
in Figure 2 (highlighted using circled red dotted line). It
concatenates the high-level feature map produced by FCN
with the probability map and then the final masks will be
predicted after a convolutional layer. By incorporating the
semantic embedding, the predicted referring mask is improved
both quantitatively and qualitatively (refer to the experiment
for details).

C. LSTM-based Language Expression Encoder

To represent the input natural language expression, we adopt
a recurrent Long-Short Term Memory (LSTM) network to
encode the text sequences to fixed-length vectors [48], [49].
Specifically, we first fix each text sequence to a uniform length
by padding with zero or cut the excess. The structure of the
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encoding network is illustrated in Figure 3, we denote the
trimmed sentence by S = (S0, ..., SN ) where we represent
each word as a one-hot vector St (the t-th word of the
vector). After using a word embedding matrix We, we put
the embedded word vector WeSt into the LSTM network
at each time step. The LSTM network includes various gate
mechanisms including input gate it, forget gate ft, output gate
ot, memory state ct and hidden state ht. The definition of the
gates and states are as follows:

it = σ (Wixxt +Wihht−1)

ft = σ (Wfxxt +Wfhht−1)

ot = σ (Woxxt +Wohht−1)

ct = ft � ct−1 + it � tanh(Wcxxt +Wchht−1)

ht = ot � tanh(ct),

(4)

where � represents the element-wise multiplication and the W
matrices are the learned parameters. The hidden state hT at the
last time step aggregates the whole sentence and is regarded
as the representation of the language expression.

D. Generative Adversarial Network Based Framework

In this section, we elaborate the generative adversarial
module. The cross-entropy loss of pixel-wise classification
calculates the difference between the network prediction and
the ground truth labels independently. It tends to ignore the
label statistics. For instance, the shape of a target region or
object cannot be captured by the pixel-wise loss function. As a
result, in addition to the cross-entropy loss LCE , we introduce
another adversarial loss term that is based on the GAN [17].
Since the adversarial training captures the distribution of
the entire image, mismatches in the label statistics can be
penalized by the adversarial loss term. In traditional GAN, a
generative model G and a discriminative model D are jointly
trained to play a minimax game. G maps samples from noise
distribution Pz to the data distribution Pdata, while D aims
to distinguish the prediction from G and the ground truth.
Consequently, the G tries to predict data that as “real” as
possible.

The objective function of this game is:

min
G

max
D

Ex∼Pdata
[logD(x)]+Ez∼Pz

[log(1−D(G(x))] (5)

Different from the traditional GAN that samples from noise,
our adversarial loss term is conditioned on the predicted seg-
mentation mask, as shown in Figure 2. Specifically, we adapt
the G to our mask prediction function F and condition on the
concatenation of both the mask M̂ = F (x) and input x. We
empirically found that better results can be achieved compared
to traditional GAN. Therefore the proposed adversarial loss
term Ladv is defined as:

Ladv = max
D

Ex∼Pdata
[logD(x⊕M)]+

Ex∼Pdata
[log(1−D(x⊕ F (x))],

(6)

where E is the empirical estimate of the expected value of the
probability and x is the input image. The operator ⊕ represents

concatenation. We adapt this framework for referring image
segmentation by jointly optimizing F and D.

Then the final joint loss function can be defined as a
weighted aggregation of the pixel-wise loss term and the
adversarial loss term. λ is referred to as the balancing weight,
and the joint loss is defined as:

L = Ladv + λLCE , (7)

where LCE and Ladv refer to Lseg(f(I, S; θ)) and
Ladv(f(I, S; θ)) in Equation (1).

During the inference, we only use the generator network for
the referring image segmentation inference. As a result, we
can refine the prediction without any additional computation
and time after the training phase. Given a test image, the
Softmax layer of the generator outputs the probabilities of each
pixel belonging to the referring object. Then the pixel with
probability larger than threshold δ is assigned to the referring
object.

IV. EXPERIMENTS

In this section, we evaluate the proposed ASGN model
on four benchmark datasets by comparing with the previous
referring image segmentation methods. In addition, further
evaluation is performed by applying our model to different
baseline methods.

A. Datasets

Both UNC [7] and UNC+ [7] are constructed based on MS
COCO dataset [57]. The difference between these two datasets
is that no location words are allowed in the expression in the
UNC+ dataset. UNC includes 142,209 referring expressions
and 19,994 images, while UNC+ includes 141,564 expressions
and 19,992 images. We use the same data split as in [7]. For
UNC dataset, we use 120,624 image/expression pairs as the
training set and employ tree testing subsets with 10,834, 5,657
and 5,095 pairs each. Similarly, for the UNC+ dataset, the size
of training and testing sets are 120,191 and (10,758, 5,726,
4,889), respectively.

Containing 104,560 expressions and 26,711 images,
Google-Ref [48] is also selected from MS COCO dataset [57].
We use the same data split as in [48]. 85,474 image/expression
pairs are used for training and 9,536 pairs for testing.

ReferItGame [58] contains 130,525 expressions and 19,894
natural images. Different from the above three datasets, Refer-
ItGame contains background segmentation masks, such as
“sky” and “water”. We use the same data split as in [1]:
59,976 image/expression pairs for training and 60,105 pairs
for testing.

B. Evaluation Metrics

As the region-based metric Intersection over Union
(IoU) [1], [2] takes into account both the false and the missed
values for each class, it has been used as a standard metric
for semantic segmentation evaluation. Here we also utilize the
IoU as the evaluation metric in our experiments.
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TABLE I: Comparison with baseline models on IoU. In the first column, R means ResNet weights, D means DeepLab weights,
DE means detail enhancement, SE means semantic embedding, AT means adversarial training, DCRF means DenseCRF. Blank
entries where authors do not report performance.

Method UNC UNC+ Google-Ref ReferItGame
val testA testB val testA testB val test

Hu et al. [53] (2016) - - - - - - 34.06 49.91
D+RMI+DCRF [2] (ICCV 2017) 45.18 45.69 45.57 29.86 30.48 29.50 34.52 58.73
LBIE [54] (CVPR 2018) - - - - - - - 50.09
DMN [55] (ECCV 2018) 49.78 54.83 45.13 38.88 44.22 32.29 36.76 52.81
KWAN [56] (ECCV 2018) - - - - - - 36.92 59.09

SNLE[1] - - - - - - - 48.03
SNLE+AT - - - - - - - 50.17
SNLE+DE+SE+AT - - - - - - - 52.87

R+LSTM 39.29 39.80 39.15 26.87 27.52 25.28 28.06 54.04
R+LSTM+AT 41.18 42.19 40.30 30.14 31.44 29.37 34.42 54.41
R+LSTM+DE+SE+AT 45.37 46.84 45.15 34.38 35.76 32.49 36.82 57.92

D+LSTM 43.32 43.71 43.25 28.61 29.03 28.14 32.86 56.78
D+LSTM+AT 44.74 45.75 44.05 33.08 33.59 31.27 38.89 57.11
D+LSTM+DE+SE+AT 48.04 48.86 47.64 36.25 37.47 34.48 40.36 58.43

D+RMI 44.51 44.83 44.74 30.18 31.02 30.05 34.27 57.39
D+RMI+AT 45.40 46.10 44.87 33.88 35.01 32.70 39.60 58.74
D+RMI+DE+SE+AT 50.46 51.20 49.27 38.41 39.79 35.97 41.36 60.31

To allow for comparison, we also evaluate with the Pre-
cision@X metric at 5 different IoU thresholds from easy to
hard: 0.5, 0.6, 0.7, 0.8, 0.9 which is consistent with previous
work [1], [2]. The Precision@X metric is the percentage of
test samples if the IoU between prediction and ground-truth
passes the threshold. e.g.Precision@0.5 is the percentage of
testing samples if its predicted segmentation overlaps with the
ground-truth region by at least 50% IoU.

C. Implementation Details

Several baseline methods are compared with the proposed
ASGN framework. R/D+LSTM are the baseline models which
employ ResNet-101 or DeepLab-101 to extract image features
respectively. D+RMI [2] uses a recurrent multimodal LSTM
(mLSTM) interaction model to extract text features instead
of LSTM. SNLE represents the method proposed by [1]
which employs the same architecture as the baseline model
R+LSTM, except that it uses FCN-32s to extract image
features. DE, SE and AT represent the two skip connections of
detail enhancement, semantic embedding and the adversarial
training respectively. Specifically, configurations without the
AT indicate that only the LCE term in Equation 7 is used for
training, while the methods with AT means both the two terms
of Ladv and LCE are used. However, only using the Ladv term
will lead to a large performance decrease, since this loss term
plays a supporting role in the segmentation network training.
So only with and without second term experiment results are
provided.

Following [2], in our implementation, the size of the input
image and ground truth segmentation are set to 320×320. The
dimensions of image feature and sentence vector are 1,000. δ
is set to 10−9. The backbone ResNet-101 is pretrained on
ImageNet [59], and DeepLab-101 [25] is finetuned on Pascal
VOC [33]. To optimize our networks, we follow the standard
approach from [17]: the model is trained alternatively by one

gradient descent step on D, then one step on G. We use the
Adam optimizer with a fixed learning rate of 0.00025 on both
generative phase and discriminative phase.

D. Comparison to State-of-the-art

We compare our proposed ASGN approach to baseline
methods and state-of-the-art methods on four datasets. The
main results of our evaluation are summarized in Table I. The
state-of-the-art methods are listed in chronological order. It
can be observed that our proposed method outperforms all the
baseline methods by a large margin in terms of the overall
IoU metric, as shown in the first part of Table I.

We show the impact of GAN and semantic guidance
separately, in the following parts of Table I. The second
row of each baseline shows the performance of adversarial
training (+AT) and the third row indicates the superiority
of feature embedding (+DE+SE). In particular, R+LSTM+AT
and D+LSTM+AT achieve 34.42% and 38.89% in Google-
Ref dataset, which outperforms the baseline models more than
6%. Also, our AT models on UNC+ dataset achieve 4-5%
performance improvement on the validation and test sets. In
comparison to the performance on ReferItGame dataset, the
improvement by using the adversarial model is relatively lower
than the other datasets. One possible reason for the smaller
performance gain is: the ReferItGame dataset contains more
“stuff” segmentation masks, i.e.“sky” and “ground”, where
these “stuff” masks are different from other objects since
“stuff” has various shapes and different pixel label statistics.
It is much more difficult for the discriminator to distinguish
the predictions from real masks.

Compared with the +AT setups, we can see that our final
model in the third row outperforms prior methods by a
relatively large margin. In particular, R+LSTM+DE+SE+AT
leads to 45.37%, 46.84% and 45.15% for three testing sets
of UNC database, with significant improvements (more than
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Original Image Ground Truth R+LSTM [2] R+LSTM+AT R+L+DE+SE+AT

A guy sitting in front of a computer.

The chair on the bottom right.

Robertson on the right.

The wall behind people all.

Fig. 4: Visualization results of referring image segmentation. We compare our two proposed models with baseline R+LSTM [2].
The fourth and fifth column are our proposed approaches.

Original Image Ground Truth R+LSTM R+LSTM+AT R+LSTM+SE R+LSTM+DE R+LSTM+DE+SE+AT

Guy on right in black.

White teddy bear on the right.
Fig. 5: Visualization of ablation study on UNC dataset. The last four columns are our proposed approaches.

4%) over the second row. The results show that after visual
feature embedding, the model can depict the target region more
accurately.

In addition, we show the corresponding qualitative results
in Figure 4 as well. The results in Figure 4 show that
by adding detail semantic guidance and adversarial training
scheme, ASGN model can segment the region described by
expressions well. It is clear that the segmentation results in
the fourth column cover better target objects. Besides, in the
last column, after adding multi-scale features and semantic
embedding, more semantic information is introduced into the
model which can well depict the object boundaries. The Refer-
ItGame dataset is more flexible compared to the other datasets
as it contains some background region like “sky” in addition to
the foreground objects. An example is shown in the last row

of Figure 4, in which the proposed ASGN model can well
segment the “wall” in the images. The experimental results
demonstrate that our model works well for both foreground
and background regions.

Comparing to the state-of-the-art methods, the results of
the proposed approach outperform existing works. As demon-
strated above, the performance can be significantly improved
by our approach. Although the performance of the proposed
framework on four example baselines cannot exceed the state-
of-art methods on all datasets (i.e.testA of UNC), our approach
is general and can be embedded in any other state-of-the-art
frameworks to achieve a further improvement, since most of
referring image segmentation methods have similar segmen-
tation network backbone (ResNet or DeepLab) to our given
baseline examples.
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TABLE II: Results of each metric term of ResNet models on UNC dataset. In the first column, R means ResNet weights, DE
means detail enhancement, SE means semantic embedding and AT means model with adversarial training.

Testing Set Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 IoU

R+LSTM 31.99 19.37 8.72 2.23 0.08 39.29
R+LSTM+AT 34.75 20.35 8.45 2.10 0.09 41.18
R+LSTM+SE 34.88 22.11 10.55 3.21 0.11 40.14

val R+LSTM+SE+AT 35.76 22.19 10.68 3.30 0.16 42.42
R+LSTM+DE 41.51 30.44 19.06 7.96 0.94 44.88
R+LSTM+DE+AT 42.25 31.56 20.35 8.94 1.01 45.06
R+LSTM+DE+SE 42.13 30.03 19.40 8.20 0.82 44.92
R+LSTM+DE+SE+AT 43.88 33.76 22.30 10.95 1.05 45.37

R+LSTM 31.13 19.00 8.66 2.14 0.05 39.80
R+LSTM+AT 34.52 21.00 9.23 2.02 0.04 42.19
R+LSTM+SE 34.82 21.95 9.79 3.02 0.05 40.69

testA R+LSTM+SE+AT 37.79 22.56 10.09 2.44 0.11 43.70
R+LSTM+DE 42.46 31.25 20.40 8.38 0.64 45.53
R+LSTM+DE+AT 43.74 32.13 22.12 11.98 1.33 46.17
R+LSTM+DE+SE 43.91 30.88 21.38 9.93 0.82 45.63
R+LSTM+DE+SE+AT 44.05 34.81 24.71 13.77 2.33 46.84

R+LSTM 33.58 20.96 9.91 2.37 0.16 39.15
R+LSTM+AT 34.39 22.04 10.30 2.47 0.10 40.30
R+LSTM+SE 35.54 23.00 11.25 3.49 0.21 39.86

testB R+LSTM+SE+AT 37.19 23.96 11.23 2.61 0.18 42.13
R+LSTM+DE 42.32 32.33 20.71 9.54 1.12 44.71
R+LSTM+DE+AT 43.37 32.38 20.99 10.53 1.33 44.97
R+LSTM+DE+SE 42.16 32.97 20.86 9.38 1.13 44.74
R+LSTM+DE+SE+AT 44.08 33.25 21.67 11.54 2.08 45.15

E. Ablation Study

To validate the effectiveness of each component in our
proposed ASGN approach, we conduct ablation studies on
UNC dataset with ResNet+LSTM baseline method. Quantita-
tive and qualitative results are shown in Table II and Figure 5,
respectively.

Semantic Embedding The introduced semantic feature
embedding encourages the predicted mask to conclude more
semantic information which can counteract the impact caused
by adding natural language features. To analyze this compo-
nent, we conduct experiments on with and without semantic
feature embedding on the UNC dataset. As the results shown in
Table II, with semantic feature works better than without such
component. In particular, R+LSTM+SE achieves 40.14% in
verification set. All those experiments results demonstrate the
effectiveness of semantic feature embedding for referring seg-
mentation task. In Figure 5, the fifth column (R+LSTM+SE) of
each row shows the corresponding qualitative performance. We
can observe that without semantic embedding the model fails
to well segment the object boundaries while with semantic
embedding the model can predict better segmentation mask for
the inferred objects. For example, in the first row in Figure 5,
the edges of the man’s shoulders, arms and head can be
detected well by the R+LSTM+SE approach compared to the
third column (R+LSTM) method.

Detail Enhancement Based on the baseline model, we add
the multi-scale feature extracted from the front convolutional
layers (conv3, conv4 and conv5) to facilitate the segmentation.
To find out how to structure the detail enhancement skip
connection, we investigate the effect by varying convolutional
layers combination for providing detail information. As shown
in Table III, all the performances are improved compared to the

TABLE III: Comparison of different convolutional layer or
layer combination in detail enhancement on UNC dataset.

Methods val testA testB

R+LSTM 39.29 39.80 39.15

conv1 41.56 42.28 41.23
conv2 42.33 43.18 41.70
conv3 42.21 43.23 41.70
conv1+conv2+conv3 42.76 42.97 42.41
conv4+conv5 43.56 43.51 43.43
conv3+conv4+conv5 44.88 45.53 44.71
conv2+conv3+conv4+conv5 44.55 45.65 43.77
conv1+conv2+conv3+conv4+conv5 43.96 44.87 43.40

baseline R+LSTM method, which validates the effectiveness
of the detail enhancement. We observe that the IoU drops
by near 3% when only using conv1 layer compared to other
combinations. The reason is that the first layer (conv1) cap-
tures too detailed local information which does not contain
semantic information like object contours. On the other side,
all the combinations show better performance compared to
single layer settings, due to the abundant information captured.
More than 5% performance improvement can be brought
when employing the conv3, conv4 and conv5. In consequence,
we perform the detail enhancement from the combination
of conv3, conv4 and conv5 features for better segmentation
performance.

We now proceed to evaluate the detail enhancement and
investigate how it benefits the referring segmentation. For
detail enhancement, we can see that both the overall IoU and
Precision@X metrics in Table II of the ASGN method are
higher than the baseline approach. In particular, R+LSTM+DE
improves the IoU from 39.29% to 44.88%, which outperforms
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Fig. 6: Visualization of the improvement about prediction with the increasing of iterations. In each example, the first row is
the result of R+LSTM, the second row is the result of R+LSTM+AT.

TABLE IV: Comparison of the classification accuracy with or
without GAN. We train two svm classifiers to divide masks
into the predicted class generated by two methods and the
ground truth respectively.

Methods Accuracy

R+LSTM 92
R+LSTM+AT 90.75

Fig. 7: IoU across training iterations on the UNC dataset on
validation data with and without adversarial training.

the baseline model by more than 5%. Therefore, the multi-
scale feature maps from front layers of network backbone can
introduce more visual detailed information that is beneficial to
referring image segmentation. The corresponding qualitative
performance of this component is shown in the sixth column
(R+LSTM+DE) in Figure 5. It can be observed that the
model with the multi-scale feature connection can segment the
corresponding region with explicit edges. In particular, in the
last row in Figure 5, after introducing the detail enhancement
skip connection, our R+LSTM+DE approach can well predict
the boundaries of the bear, especially the edges of its arms and

legs. This means the multi-scale features enrich the detailed
visual information by the skip connection.

Adversarial Training We also analyze the effectiveness
of the adversarial training in our proposed referring image
segmentation method. As shown in Table IV, we select 2,000
images from the Google-Ref dataset and use two methods
of R+LSTM and R+LSTM+AT to predict the corresponding
mask inferences. After that, we mix the ground truth masks
with the predicted masks together. Then we extract visual fea-
tures of the two mixed sets from the fc7 layer of AlexNet [60].
Then two SVM classifiers are trained (half size as the training
set) to separate the predicted masks from the ground truth. The
binary classification accuracy of R+LSTM features is 92%,
while the accuracy for R+LSTM+AT is 90.75%. The lower
accuracy when adding the GAN indicates that the proposed
adversarial loss leads the prediction to be closer to the ground
truth. That is, our network successfully predicts mask that is
less distinguishable from the ground truth.

The quantitative results are shown in Table I and Table II.
As mentioned above, the performance of methods with +AT
setups shows superiority under overall metrics. In Table II,
we present the results of with AT on different compared
methods including embedding schemes. In particular, on the
testA sets of UNC database, the IoU is increased from 39.80%
to 42.19% for R+LSTM. Similar performance gain can be
observed in adding the embedding schemes, with more than
3% performance improvement (from 40.69% to 43.70%). We
also show the corresponding qualitative performance of the
adversarial component in the fourth column (R+LSTM+AT)
in Figure 5. It can be observed that the segmentation maps
produced by R+LSTM+AT method are more similar to the
ground truth than the ones predicted by R+LSTM method.

In Figure 7, we display the evolution of the referring
segment prediction accuracy on the UNC dataset, using the
baseline model and the corresponding adversarial model. Note
that the adversarial strategy results in less over-fitting, i.e.,
generating a regularization effect, leading to high accuracy
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TABLE V: Comparison of computational time and memory costs.

Methods IoU training time(h) testing time(s) memory costs(m)

R+LSTM 39.80 19.46 652.25 448.46
R+LSTM+DCRF 40.44 19.46 2782.04 448.46
R+LSTM+DE+SE+AT (Proposed) 46.84 39.21 660.04 481.23

TABLE VI: Comparison of different λ settings on UNC
dataset.

λ val testA testB

0.01 39.50 39.82 40.44
0.1 45.37 46.84 45.15
1 42.35 43.37 41.97

on validation data. It is worth mentioning that our ASGN
framework can obtain a better segment result with fewer
iterations and converges faster compared to previous methods.
In Figure 6, we further visualize the improvement of prediction
with the increasing of iterations. We can see that the model
with adversarial training results in better performance com-
pared to the one without GAN, at the same iterations.

We also evaluate the computational time and memory costs
of the baseline model and the adversarial training model.
All the computational time experiments are performed on
a PC with GeForce GTX 1080 GPU. The results of testA
in UNC dataset are shown in Table V. It can be observed
that the proposed framework can achieve comparable testing
time and memory cost to the baseline (R+LSTM). Compared
with methods using post-processing like DCRF, the ASGN
approach can save more time in test phase, which is more
suitable for practical applications. Although the proposed
network increases the training time cost, it is valuable and
acceptable because of the nearly 7% improvement in IoU.

In summary, the extensive experimental results indicate that
the proposed ASGN model is able to boost the performance
of referring semantic segmentation by a large margin.

Parameter Setting The value of λ in Equation 7 and
threshold δ are empirically set according to the experiment on
UNC dataset with ResNet+LSTM baseline method. We select
three λ values of 0.01, 0.1 and 1. Since the pixel-wise cross
entropy loss is much larger than the adversarial loss, we make
λ ≤ 1 to balance the training. As shown in Table VI, compared
with λ = 0.01 and 1, the precision outperforms by a relatively
large margin when λ = 0.1. Therefore we choose the λ to be
0.1 according to the experiment. Then we test the value of
parameter δ and select six values from 10−10 to 10−5. The
results of different values are comparable. Thus we choose
δ = 10−9 in all the evaluations following previous work [1],
[2].

Failure Case Typical failure cases are depicted in Figure 8.
We find that the failure cases are mainly about difficult small
objects and ambiguous referring. In Figure 8(a) the network
cannot segment the referring “light”, which is too small to
segment. It may be alleviated by enlarging the scale of input
images. In Figure 8(b), the network segments the wrong
window since the correct corresponding region is the window

(a) The light on the left in the air above the head of woman.

(b) The window in the left.

Fig. 8: Failure cases of our model. Given the input images
(left) and corresponding referring expressions (below), the
predicted referred regions by our model (right) and the ground
truth segment masks (middle) are shown.

on another building outside the large window in the current
building. It is mainly caused by the ambiguity in the expression
which confuses the model.

V. CONCLUSION

In this paper, we proposed an adversarial semantic guid-
ance network for referring image segmentation. It not only
encourages the distributions of the network inference and the
ground truth to be similar but also adds more detailed semantic
guidance. We first leverage multi-scale features by a skip con-
nection so that more detailed visual information is introduced.
Then semantic embedding is utilized to eliminate the impact
from the combination of expression features. Finally, in order
to constrain the distribution similarity, we further introduce
the adversarial training scheme as a supplemental loss term
in addition to the cross-entropy loss. Extensive experimental
results demonstrate that the proposed ASGN approach leads
to improvements in referring image segmentation on various
benchmark datasets. In addition, the proposed framework
is shown to be beneficial to other existing referring image
segmentation models.
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