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Self-Supervised Ultrasound to MRI Fetal Brain
Image Synthesis
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Abstract—Fetal brain magnetic resonance imaging (MRI) of-
fers exquisite images of the developing brain but is not suitable
for second-trimester anomaly screening, for which ultrasound
(US) is employed. Although expert sonographers are adept at
reading US images, MR images which closely resemble anatomi-
cal images are much easier for non-experts to interpret. Thus in
this paper we propose to generate MR-like images directly from
clinical US images. In medical image analysis such a capability
is potentially useful as well, for instance for automatic US-
MRI registration and fusion. The proposed model is end-to-end
trainable and self-supervised without any external annotations.
Specifically, based on an assumption that the US and MRI data
share a similar anatomical latent space, we first utilise a network
to extract the shared latent features, which are then used for
MRI synthesis. Since paired data is unavailable for our study
(and rare in practice), pixel-level constraints are infeasible to
apply. We instead propose to enforce the distributions to be
statistically indistinguishable, by adversarial learning in both the
image domain and feature space. To regularise the anatomical
structures between US and MRI during synthesis, we further
propose an adversarial structural constraint. A new cross-
modal attention technique is proposed to utilise non-local spatial
information, by encouraging multi-modal knowledge fusion and
propagation. We extend the approach to consider the case where
3D auxiliary information (e.g., 3D neighbours and a 3D location
index) from volumetric data is also available, and show that this
improves image synthesis. The proposed approach is evaluated
quantitatively and qualitatively with comparison to real fetal
MR images and other approaches to synthesis, demonstrating
its feasibility of synthesising realistic MR images.

Index Terms—Self-Supervised, Unpaired, Ultrasound, MRI.

I. INTRODUCTION

OBSTETRIC ultrasound (US) is the most commonly
applied clinical imaging technique to monitor fetal

development. Clinicians use fetal brain US imaging (fetal
neurosonography) to detect abnormalities in the fetal brain
and growth restriction. However, fetal neurosonography suffers
from acoustic shadows and occlusions caused by the fetal
skull. On the other hand, magnetic resonance imaging (MRI)
is unaffected by the presence of bone and typically provides
good and more complete spatial detail of the full anatomy [1].
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Fig. 1. Top: Overview of the proposed US-to-MR synthesis framework.
Bottom: Assumption of the shared latent space.

Whereas MRI is costly and time-consuming, making it un-
suitable for fetal anomaly screening, in the second and third
trimesters it is often routinely used for assessment of the fetal
brain [2].

Medical image synthesis has received growing interest
in recent years. Most prior work to date has focused on
the synthesis between MR and CT (computed tomography)
images [3]–[5] or of retinal images [6], [7]. Simulation of
US images has also been proposed to assist in automatic
alignment of US and other modalities [8], [9]. Prior to the deep
learning era, medical image synthesis was primarily based on
segmentation and atlases. Taking MR-to-CT image synthesis
as an example, in segmentation-based methods [10], [11], first
an MR image is segmented into different tissue classes, and
then the corresponding synthesised CT image is generated
by intensity-filling for each class. On the other hand, atlas-
based approaches [12], [13] first register the input MR image
to an MR atlas by a transformation, followed by applying
such transformation to a CT atlas to synthesise the corre-
sponding CT image. Notwithstanding, the above approaches
rely heavily on the segmentation and atlas quality, implying
low-quality would directly lead to a poor synthesis. Methods
based on convolutional neural networks (CNNs) have demon-
strated promising performance for medical image synthesis
in recent literature. For instance, given a large number of
paired MR-CT data, some proposed methods [3], [4], [14]
learn a mapping directly from MR to CT through a CNN
architecture design. To alleviate the paired data restriction,
other methods [5], [15] have converted the image synthesis
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problem to image-to-image translation by a recently proposed
CycleGAN architecture [16]. Even though the training data is
not necessarily perfectly registered, weakly paired data (e.g.,
pairs from the same subject) or other types of supervision from
additional tasks like dense segmentation are still required in
these methods.

In this paper, we address the problem of US-to-MR image
synthesis by a learning-based framework. Fig. 1 summarises
the proposed framework. We design an anatomically con-
strained self-supervised model to learn the mapping from US
to MR under an assumption that US and MR share a common
representation in a latent space. The anatomical constraint
considers both the latent space and the geometrical structures
between the two modalities. To the best of our knowledge, this
article presents the first attempt towards unpaired US-to-MR
synthesis in a self-supervised manner. Qualitative and quan-
titative experiments demonstrate that the proposed approach
generates realistic MR images, even with highly-imbalanced
data.

Relationship to Preliminary Work [17]: An early version
of this work was presented in [17]. In the current paper, we
considerably expand the preliminary study by: 1) We further
propose three new solutions to utilise 3D auxiliary information
and boost the synthesis performance. Leveraging additional
neighbouring inputs and predicting the position in 3D space
as an auxiliary task are explored to achieve the goal. 2)
In this version we provide a more detailed analysis of our
framework and its new extensions. The detailed architecture
of each network components are elaborated; more details
with additional illustrations are included for the EdgeNet;
new perspectives on the proposed cross-modal attention is
included; a detailed analysis of the anatomical latent space is
presented. 3) Additional experimental evaluations are included
in this extension, with more training details; standard deviation
for all the quantitative performance is reported for better
understanding of the models; more qualitative results are
presented with comparison to other solutions; an anatomy-
preserving analysis is presented to evaluate the effectiveness
of the proposed approach for both synthetic structures and real
data; performance on the aforementioned 3D-based solutions
is also reported with comparison to our preliminary results.

The main highlights of the paper are summarised as:

• We present an approach to synthesise MR-like images
from unpaired US images;

• We propose an anatomy-aware deep neural network ar-
chitecture with mono-directional consistency, to address
the synthesis problem in a self-supervised manner;

• Based on the shared latent space assumption, we propose
a latent space consistency constraint;

• We propose a cross-modal attention module that propa-
gates information across modalities in the feature domain;

• We propose to leverage 3D auxiliary information to
reduce ambiguity during image synthesis;

• Comprehensive experimental evaluation and analysis
show that the proposed synthesis framework is able
to generate high-quality MR-like images and performs
favourably against other alternative methods.

The rest of this paper is organised as follows. Section II
reviews related work and discusses the main differences to
our approach. In Section III, we elaborate on the detail of
our self-supervised US-to-MR image synthesis approach, with
analysis of the network architecture design and the underlying
representative features. Following that, we perform exten-
sive experiments evaluating the effectiveness of the proposed
framework both qualitatively and quantitatively in Section IV.
In addition, potential applications derived from this work and
the model generalisations are discussed in Section V. Finally,
the paper is concluded in Section VI and possible future
directions are discussed.

II. RELATED WORK

A. Medical Image Synthesis

Medical image synthesis or simulation aims to synthetically
generate one imaging modality from another. Classical meth-
ods to achieve this have been based on segmentation and
atlases. Segmentation-based approaches are straightforward,
and in the case of CT synthesis from MRI, may, for instance,
first segment the MR images into different parts (e.g., bony
structure, soft tissue) and then assign the corresponding CT
number to each part. In [18], the authors study the possibility
of radiotherapy treatment planning using only MR by bone
and water segmentation. Berker et al. propose to address the
MRI-based attenuation correction problem by segmenting air,
bone and tissues [10]. On the other hand, atlas-based methods
generate a synthetic CT by deforming a CT atlas onto the
patient space, where the required deformation is found by
registering an MR atlas to the patient real MR image. Dowling
et al. [19] generate pseudo-CT scans by nonrigid registration
of an MRI atlas to an MRI scan. The authors of [12] use
atlas-based regression to deform a collection of atlas CTs
into a single pseudo-CT, based on the target MR and an
atlas database. However, the segmentation-based approaches
suffer from requiring a time-consuming segmentation, while
the uncertainty in registration (e.g., missing tissues) is a critical
inherent limitation of atlas-based methods. With the recent
progress of deep learning in medical image analysis, CNN-
based approaches have started to dominant the medical image
synthesis. Zhao et al. [3] propose to directly optimise the
mapping function for MR to CT synthesis, with reference to
different 3D views. However, such a regression-based method
may lead to blurred results if there are misalignments between
CT and MR images. To handle this problem, some works [4],
[6] augment the regression-based loss with another adversarial
loss in a generative adversarial network framework [20].
Although blur caused by misalignment has been addressed,
a training set of paired images (e.g., MRI and CT) is still
necessary for the above models. Whereas such paired training
data is very scarce for many clinical imaging applications.

B. Self-Supervised Learning

Self-supervised (also termed ‘unsupervised’ in some lit-
erature) learning is a learning technique that does not rely
on the supervision from external label/annotation, i.e., the
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learning is totally based on the available data itself. An auto-
encoder (AE) [21] is one of the most basic self-supervised
learning approaches, which optimises a self-reconstruction loss
by recovering the input signal itself. Derivatives including
the denoising auto-encoder (DAE) [22] and variational auto-
encoder (VAE) [23] also focus on self-supervised learning
but with different optimisation functions. Recently, Good-
fellow et al. proposed the Generative Adversarial Network
(GAN) [20] which learns to generate meaningful signals from
random noise, by playing a minimax game. Based on the
GAN framework, an architecture named CycleGAN [16]
or DualGAN [24] is proposed to address the problem of
image-to-image translation, without the dependency on paired
training data. Consequently, such an architecture with cycle
consistency has enabled a group of medical image synthesis
methods in recent years, mainly focusing on MR-to-CT image
synthesis [5], [15], [25], [26], and vice versa [15], [27].
Building on top of the original CycleGAN, in [5] and [26],
additional loss terms have been introduced to further constrain
the structure features. Zeng and Zheng [28] propose a hybrid
GAN that combines a 3D generator and a 2D discriminator
to synthesise CT from MR images, in a weakly-supervised
manner. In [15], the authors propose a solution to MR-CT
synthesis by a 3D CNN composed of mutually beneficial
generators and segmentors with cycle- and shape-consistency.
Paired data dependency has been alleviated to some extent by
the above CycleGAN-based approaches. However, aligned or
weakly-aligned data or auxiliary tasks are still necessary in
these works. Besides, MR and CT are relatively, similar in
anatomically appearance and relatively easier to align, when
compared with ultrasound. To our knowledge, there is no prior
work on cross-modal image synthesis from ultrasound (US)
data, in a data-driven self-supervised manner.

C. Ultrasound Image Analysis
Different from the aforementioned medical imaging modal-

ities MRI and CT, US imaging usually does not present
as clear and sharp anatomical structures. However, its real-
time and un-harmful properties make it a much more suitable
choice for many medical screening scenarios, including fetal
development monitoring. Prior fetal US image analysis work
mainly focuses on fetal anatomy detection [29]–[33] and
registration to other modalities [8], [9], [34], [35]. Maraci et
al. [29] propose an approach to make the US diagnosis easier
by combining simple US scanning protocols with machine
learning solutions. Yaqub et al. [30] propose a random forest
based classifier to categorise fetal US images. With the help
of deep learning techniques, Chen et al. [31] present a CNN-
based approach to locate the fetal abdominal standard plane
in US videos. Some methods [33] utilise human eye-gaze
data to assist standard plane detection. The fusion of tracked
US with other modalities like CT and MRI has benefits for
a variety of clinical applications. Wein et al. [34] develop
methods to simulate US from CT in real-time, while in [35]
the authors evaluate the performance of methods of MRI to
US registration. Kuklisova et al. [8] propose a method for 3D
fetal brain US and MRI registration by simulating a pseudo-
US from an MR volume segmentation. While most existing

work focusing on the above US image analysis topics, there
lacks a study on US to MRI synthesis in the literature.

III. METHOD

In this section, we elaborate the proposed approach for
US-to-MR image synthesis in detail. Specifically, we first
pre-process the US volumes by cropping and automatically
aligning the US volumes as described in [36]. Following that,
we manually align the MR volume to the same reference
space. Then we propose a novel learning-based framework for
unpaired US-to-MR synthesis, which is illustrated in Fig. 2
(detailed structure of the blue block in Fig. 1(a)). Given a
source US image, the corresponding MR image is synthesised
with reference to real MR data. In addition to pixel-level
(rec. loss) constraints, a distribution similarity (dis. loss) is
also incorporated to address the unpaired data property and
ensure anatomical consistency. As our objective is to synthesis
MR from US images, the overall design of the proposed
framework is mono-directional, instead of bi-directional as in
the CycleGAN architecture [16]. That is, we only have the
forward cycle (i.e., US→MR→US) without the reverse cycle
(i.e., MR→US→MR), and we experimentally find that such
a design leads to less ambiguity for image synthesis in our
case. Next, we elaborate on each of the proposed components
in detail.

A. Anatomy-Aware Synthesis

Paired (e.g., same fetus at the same gestational age) fetal
brain US and MR data is rare in clinical practice, and
unavailable in our case. Even if it is available, US and MR are
not simultaneously co-registered as has often been assumed in
prior medical image synthesis methods [3], [4]. Hence it is
infeasible to learn the mapping from US to MR directly by
traditional CNN-based techniques for our task. Therefore, we
propose to address the problem through a synthesis framework,
by enforcing the synthesised MR images to lie in a similar
distribution to real MR data. Throughout the synthesis, an
important objective is to correctly map the clinically impor-
tant anatomical structures between the two modalities. As a
result, anatomy-aware constraints are specifically designed to
implicitly preserve anatomy consistency.

1) Anatomical Feature Extraction: As paired data is un-
available, we assume that the US and MR images share an
anatomical latent space (Fig. 1(b)). Building upon this as-
sumption, instead of using the pixels in the image domain, we
propose to extract the underlying anatomical features and syn-
thesise images in the corresponding MR domain accordingly.
Specifically, we leverage an autoencoder to extract the latent
features, as shown in the bottom-left part of Fig. 2 (encoder-
A→decoder-B). Assume the set of n source US images as{
xiU
}n
i=1

where xiU ∈ XU is the ith image, the extracted
anatomical feature is formally defined as yi = F (xiU ) where
F (·) is the encoder.

2) Bi-directional Latent Space Consistency: The above
extracted latent features are fed into decoder-C to synthesise
the corresponding MR image. As pixel-level supervision is
unavailable for Synth. MR, we use a backward-inference path
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Fig. 2. Left: Architecture of the proposed US-to-MR synthesis framework. Right: Solutions to leverage 3D auxiliary information, each of which can be
plugged into the green part in the left framework.(i) Augmented with neighbouring slices in the 3D volume; (ii) Predicting the index of the slice in the 3D
volume; (iii) Both with augmented slices and index prediction.

(encoder-D→decoder-E) to recover the source US. Denoting
the encoded latent feature (at the end of encoder-D) as yib, we
propose a bi-directional latent space consistency constraint,
based on the assumption of shared latent space. As a result,
yi and yib are forced to lie in a similar distribution by means
of adversarial learning (Bi-latent block in Fig. 2).

3) Structural Consistency: Although the anatomical feature
extraction module encodes the main structure of an US image,
the image structure in the MR domain is quite different in
appearance compared to that in the US domain. To synthesise
realistic MR images, we further propose a constraint to enforce
the structures of the Synth. MR and the Real MR to be
similar. Noting the unpaired nature of our data, we choose
to constrain the structural information to lie in a similar
distribution. Specifically, the edge information of the Synth.
MR and Real MR is extracted by an EdgeNet, following
which a structural discriminator (Structural block in Fig. 2)
is leveraged to compute the edge similarity.

B. Cross-modal Attention

Based on the aforementioned components, the MR image
synthesis process is mainly guided by the latent features
yi extracted from encoder-A. To further leverage guidance
across different modalities, we propose a cross-modal attention
module between the US decoder-B and the MR decoder-C,
as shown in Fig. 2 (the red Attention block). Specifically,
the US features are reformulated as self-attention guidance
for MR image synthesis, and such a guidance is applied to
the MR features implicitly in an attentive manner (detailed in
Fig. 3). The cross-modal attention module consists of several
1 × 1 convolutional layers and a skip connection, without
any modification to the input feature dimension. This cross-
modal attention module leverages guidance across different
modalities (MR and US here) by cross-referencing the features
from the two modalities. Specifically, the features from US are
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Fig. 3. Detailed architecture of the proposed cross-modal attention module.

combined with the features from MR by matrix multiplication,
which can also be considered as an approximation of the
mutual information acquisition across these two modalities.
The 1 × 1 convolutions adapt the channel dimension for the
subsequent multiplication. Since our target is to synthesise
MR-like images, the original MR features are added back
to the mutual information by a skip connection, which also
keeps the feature dimension. A similar idea for single modal-
ity attention (also termed as self-attention [37] or non-local
scheme [38]) has been shown to be effective to leverage
neighbouring information in natural image analysis.

Denoting the features from the US reconstruction decoder-B
(R-US in Fig. 3) as fU and the features from the MR synthesis
decoder-C (S-MR in Fig. 3) as fM , the updated feature after
the cross-modal attention module is defined as:

f̃M = η(δ(fU )
T ⊗ φ(fU )⊗ g(fM )) + fM , (1)

where η, δ, φ, g are linear embedding functions which are
implemented by 1×1 convolutions. The proposed cross-modal
attention enforces the network to not only focus on local
activations (favoured by CNNs) but also non-local context
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information via both self- and cross-modal attention. Specifi-
cally, the local and non-local correlation is modelled by feature
matrix multiplication (⊗).

C. Joint Adversarial Objective Function

In this section, we now formally define the objective func-
tion that is used to train the proposed US-to-MR synthesis
model. As aforementioned (and can be observed in Fig. 2),
there are two forms of objective terms: one based on pixel-wise
reconstruction (rec. loss) and the second a discriminator-based
distribution similarity (dis. loss). The rec. loss is defined as an
`1-norm, while the dis. loss is achieved by a discriminator with
adversarial learning [20].

1) Generative Adversarial Learning: The generative adver-
sarial network (GAN) is a self-supervised learning framework
proposed in [20], which consists of two modules, namely a
generator and a discriminator. The main idea of a GAN is to
play a minimax game with these two modules. The training
of a GAN forces the distribution of the source data x to
be similar to the target data (y) distribution. Suppose the
mapping from x to a new data space is G(x; θg) where G is
the generator with parameters θg . The discriminator D(y; θd)
outputs a binary scalar indicating whether the data y is real
or fake. Then the D net is trained to maximise the probability
of assigning the correct label to both real data samples and
samples from G. Meanwhile, the G net is trained to minimise
log(1−D(G(x))). The final objective function for a GAN is
defined as: minG maxD E[logD(y)] + E[log(1−D(G(x)))].

2) Proposed Joint Objective Function: Denoting the recon-
structed US as x̂U ∈ X̂U , latent feature as y ∈ Y , synthesised
MR as x̂M ∈ X̂M , and real MR as xM ∈ XM . The objective
for the forward path (US→MR) is defined as:

{minLF | LF = λLlat + γLapp + γLstru}, (2)

where
Llat = ExU∈XU

‖GU (F (xU ))− xU‖1, (3)

Lapp = ExM∈XM
(Dapp(xM ))

+ Ey∈Y log(1−Dapp(GM (y))),
(4)

Lstru = ExM∈XM
(Dstru(E(xM )))

+ Ey∈Y log(1−Dstru(E(GM (y)))).
(5)

Here the Llat,Lapp,Lstru are loss terms for the reconstruc-
tion from latent space, appearance, and structural consistency,
respectively. The first term Llat represents the generator loss
while the following two terms indicate the discriminator
loss. The decoder-B that is used to reconstruct Recons.US is
represented by GU , while the decoder-C for MR synthesis
is represented by GM . The x̂U and x̂M are defined as:
x̂U = GU (F (xU )), x̂M = GM (y). The discriminators Dapp

and Dstru that each consists of four conv layers are used to
measure the similarity for appearance and structure, respec-
tively. The EdgeNet is represented by E, while parameters λ
and γ are balancing weights for the objective terms, so that
they lie on a similar scale.

Denoting the BackInf.US recovered from the Synth.MR as
x̃U ∈ X̃U and the back-inferred feature at the end of encoder-
D as yback ∈ Yback, the objective for the backward path
(Synth.MR→BackInf.US) is defined as:

{minLB | LB = λLproj + γLback
app + γLbi}, (6)

where
Lproj = Ex̃U∈X̃U ,xU∈XU

‖x̃U − xU‖1, (7)

Lback
app = ExU∈XU

(Dback
app (xU ))

+ Eyback∈Yback log(1−Dback
app (GBU (y

back))),
(8)

Lbi = Ey∈Y(Dbi(y))+Eyback∈Yback log(1−Dbi(y
back)). (9)

Here the Lproj ,Lback
app ,Lbi are loss terms for the back-

inference reconstruction, backward appearance, and bi-
directional latent space consistency, respectively. Similar to
Eq. 2, parameters λ and γ are balancing weights. The decoder-
E that is used to back recover BackInf.US is represented by
GBU and x̃U = GBU (y

back). The discriminators Dback
app and

Dbi are used to compute the similarity for backward-inference
and bi-directional latent space, respectively. Based on the
above defined objective terms, the final joint loss function for
our model training is defined as:

L = LF + LB . (10)

D. 3D Auxiliary Information

Here we investigate the possibility of leveraging 3D vol-
umetric information to improve the synthesis. The proposed
approaches to leverage 3D information are shown in Fig. 2-
Right. Specifically, we propose three strategies to achieve the
goal: 1) by adding neighbouring slices as augmented input;
2) by predicting the position/index of the current slice in the
volume as an additional task; 3) with both the augmented input
and the index prediction task. For simplicity, we only show
the modified part (the green block in Fig. 2-Left) compared
to the 2D-based model. These approaches are motivated by
the constraints humans appear to have when viewing slice-
wise volumetric data. We assume that if the model is able
to utilise the 3D positional information (by either referring
to neighbours or directly reasoning its position), it could
have a more thorough understanding of the whole anatom-
ical structure and alleviate synthesis ambiguity. The above
modifications do not severely influence the original network
architecture. The augmented input only leads to a channel
number update (1 → 3) for the first layer of Encoder-A,
while all the decoders only output the middle slice. The index
prediction branch is implemented by four convolutional layers
with a fully-connected layer, in a regression manner. In the
rest of this paper, we use the original 2D settings (by default)
as aforementioned, unless otherwise specified.

E. Network Architecture

The detailed network architecture design and parameters
are presented in Table I. The proposed network basically
consists of convolutional (conv) layers, up-convolutional (up-
conv) layers, and pooling (maxpool) layers. Specifically, each
part is described as follows:
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TABLE I
DETAILS OF THE NETWORK DESIGN. THE FIVE MAIN COMPONENTS (SUBNETWORKS) ARE PRESENTED WITH DETAILED PARAMETER SETTINGS. THE

NUMBERS FOLLOW EACH conv/up-conv ARE THE KERNEL SIZE AND NUMBER OF CHANNELS, WHILE THE NUMBER FOLLOW maxpool IS THE SCALE. FC
REPRESENTS A FULLY-CONNECTED LAYER AND THE NUMBERS FOLLOWING ARE THE INPUT AND OUTPUT DIMENSIONS. THE SYMBOL � REPRESENTS

CONCATENATION, WHILE ⊕ AND ⊗ THE ELEMENT-WISE SUMMATION AND MATRIX MULTIPLICATION.

Encoder Cross-modal Attention Discriminator

Layer Input Parameter Layer Input Parameter Layer Input Parameter

enc 1 US/MR img
conv, 3×3, 48
conv, 3×3, 48
maxpool, 2

convMR S-MR conv, 1×1, 72 disc 1
img/
edge/
feature

conv, 3×3, 64, stride=2

enc 2 enc 1 conv, 3×3, 48
maxpool, 2 convUS 1 R-US conv, 1×1, 72 disc 2 disc 1 conv, 3×3, 128, stride=2

enc 3 enc 2 conv, 3×3, 48
maxpool, 2 convUS 2 R-US conv, 1×1, 72 disc 3 disc 2 conv, 3×3, 256, stride=2

enc 4 enc 3 conv, 3×3, 48
maxpool, 2 fuse

convUS 1⊗
convUS 2⊗
convMR

conv, 1×1, 144 disc 4 disc 3 conv, 3×3, 512

enc 5 enc 4 conv, 3×3, 48
maxpool, 2 output S-MR⊕fuse - out disc 4 conv, 3×3, 1

Decoder EdgeNet Volume Index Predictor

Layer Input Parameter Layer Input Parameter Layer Input Parameter

dec 1 enc 5 conv, 3×3, 48
up-conv, 3×3, 48, stride=2 g hori synthetic MR/

real MR conv, 1×5, 1 Ind 1 enc 5 conv, 3×3, 48

dec 2 dec 1�enc 4
conv, 3×3, 96
conv, 3×3, 96
up-conv, 3×3, 96, stride=2

g vert g hori conv, 5×1, 1 Ind 2 Ind 1 conv, 3×3, 32

dec 3 dec 2�enc 3
conv, 3×3, 96
conv, 3×3, 96
up-conv, 3×3, 96, stride=2

s hori g vert conv, 3×3, 1 Ind 3 Ind 2 conv, 3×3, 16

dec 4 dec 3�enc 2
conv, 3×3, 96
conv, 3×3, 96
up-conv, 3×3, 96, stride=2

s vert s hori conv, 3×3, 1 Ind 4 Ind 3 conv, 3×3, 4

dec 5 dec 4�enc 1
conv, 3×3, 96
conv, 3×3, 96
up-conv, 3×3, 96, stride=2

Out Ind Ind 4 FC, 16, 2

dec 6 dec 5�US conv, 3×3, 64
conv, 3×3, 32

output dec 6 conv, 3×3, out channel

1) Encoder and Decoder: All the encoders (and the de-
coders) share the same architecture as shown in the left part
of Table I. The encoder takes either the US image or MR
image as input and consists of five enc blocks. On the other
hand, the decoder is composed of a mirrored architecture to
the encoder to reconstruct/synthesise the target image. Each
enc block consists of conv layers and maxpool layers, while
the dec block in the decoder mainly consists of conv layers
and up-conv layers. Skip connections are added between the
encoder and decoder.

2) Cross-modal Attention: The cross-modal attention mod-
ule is proposed to implicitly learn the feature fusion strategy
between the US features and MR features. As illustrated in
Fig. 3 and Table I, this module is implemented by several basic
1× 1 conv layers, with matrix multiplication. The conv layers
are utilised to adjust the feature dimension and combination
weights for the following fusion.

3) EdgeNet: The EdgeNet extracts edges from the input
image (either US or MRI). It consists of four conv layers,
imitating the Canny edge detector (can also be other edge
detectors). Specifically, the input images are first smoothed
with Gaussian kernels and convolved with Sobel edge fil-
ters, followed by non-maximum suppression and thresholding.
Since the edge maps extracted from the EdgeNet are further
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Fig. 4. Top: Illustration of the EdgeNet, where the lock symbol indicates a
layer frozen. Bottom: Example results, where the first row shows the input
MR images and the second row shows the detected edges from the EdgeNet.

fed into the discriminator for loss computation, all the param-
eters in this module are fixed, avoid updating. Illustration of
the proposed EdgeNet, together with example generated edge
maps are shown in Fig. 4 for reference.
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4) Discriminator: There are four discriminators in our main
architecture, measuring the similarity in terms of appearance,
latent space, and structure. Each discriminator is composed of
five conv layers and outputs a scalar value, indicating whether
the input is real or fake. The discriminator essentially acts as
a binary classifier.

5) Volume Index Predictor: The index prediction branch
consists of four conv layers and an FC layer. All the conv
layers are with a 3 × 3 kernel size and decrease in the
channel dimension till the final fully-connected output layer.
The index predictor takes the feature at the latent space as
input and predicts the corresponding index of the original input
US. Possible solutions of leveraging the index predictor are
illustrated in Fig. 2-Right.

F. Anatomical Space Analysis

Our basic assumption is that the US and MR data share
a similar anatomical latent space (as illustrated in Fig. 1).
To better understand the anatomical property of the shared
latent space, here we explore it by analysing the features
between the encoder and decoder. Specifically, we visualise the
feature maps at the end of Encoder-A and Encoder-D in Fig. 5.
From the feature visualisation we can see that for the forward
pass, the features focus more on the inner-part anatomical
structures, while for the backward pass, the features primarily
learn the overall structure of the brain. This is mainly due to
the forward pass not only needing reconstruct the US itself
but also it has to synthesise the corresponding MR image.
As a result, the shared anatomical features are learned at this
point. On the other hand, the backward pass aims to infer the
original US image and is simultaneously constrained by the
latent space from the forward pass, thus focusing more on
the global structure. In addition to the features in the shared
latent space, we also visualise the corresponding attention map
(by the approach in [39]), which represents where the model
pays most attention. Similarly, it can be observed that the
forward pass focuses more on the internal structure while the
backward pass attention depicts the boundary of the brain.
The above analysis provides some evidence to validate our
assumed anatomical latent space. Note that the assumption
of bi-directional latent space consistency aims not to force
the forward and backward features of the latent space to be
identical, but to be similar in distribution, as determined by
the discriminator.

IV. EXPERIMENTS

A. Data and Implementation Details

The training and evaluation of the proposed US-to-MR
synthesis framework are based on a dataset consisting of
healthy fetal brain US and MR volumes. We obtained the fetal
US data from a multi-centre, ethnically diverse dataset [40]
of 3D ultrasound scans collected from normal pregnancies.
The MR data is obtained from the CRL fetal brain atlas [41]
database and additional data scanned at Hammersmith Hospi-
tal. As proof of principle, we selected the gestational age of
23-week for US and MR data. In the aggregate, the whole
dataset consists of 107 US and 2 MRI volumes. Around
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Fig. 5. Anatomical latent space visualisation. The top part shows the features
(a grid of 48 feature maps) for the forward pass, i.e., at the end of Encoder-A,
while the lower part shows the features for the backward pass, i.e., at the end
of Encoder-D. The corresponding attention maps with the US and MR images
are also shown on the side.

36,000 2D US slices and 600 MRI slices were extracted
accordingly. 80% of the whole database accounted for the
training and validation sets, while the remaining 20% acted as
the testing set. As detailed in Table I, the proposed model was
implemented by simple conv, up-conv, and maxpool layers.
Skip connections were included for each encoder-decoder pair
to enhance the structural details. The balancing weights λ and
γ were empirically set to 10 and 1, respectively. All the images
(US, MRI, and the corresponding edge maps) used in our
framework are of size 160×160 pixels. The index range for the
index prediction task is 160. The learning rate was initialised
as 10−4 and decayed by half for every 20 training epochs.
The whole model was trained for 100 epochs. The generator
and discriminator are optimised iteratively, i.e. updating the
generator for every update of the discriminator. Our whole
model was implemented using the PyTorch framework and
trained on an Nvidia Titan V GPU in an end-to-end manner.
Taking an US image as input, only the A, B, C and Attention
blocks in Fig. 2 are remained during the model inference,
without the whole backward path and all the discriminators.
Implementation of the proposed approach is available online1.

B. Evaluation Metrics

The commonly used evaluation metrics like PSNR (Peak
Signal-to-Noise Ratio) or SSIM (Structural Similarity) are not
applicable in our study, as US-MR data is not paired. As a
result, we propose to leverage two other alternative metrics
for the quality evaluation of our synthesised MR images: 1)
the MOS (Mean Opinion Score) and 2) the Deformation score

1https://bitbucket.org/JianboJiao/ssus2mri

https://bitbucket.org/JianboJiao/ssus2mri
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Full US Source US Ours Real MR*CycleGAN Ours (w/o bi-lat) Ours (w/o struct.) Ours (w/o att.)

Fig. 6. Qualitative performance on the US-to-MR image synthesis. Each row shows an example sample and from left to right: the original full US, pre-
processed source US, synthesised MR by CycleGAN [16] and our approach (with its counterparts). Some real MR samples are also shown for reference in
the last column. *Note that the highlighted Real MR is NOT the exact corresponding MR to the input US, instead illustrative examples for visual comparison.

(registration metric based on Jacobian). The MOS measures
the quality of a given image by a rating score between 1
and 5: 1 indicates inferior while 5 indicates superior. A user-
study was performed to achieve the MOS performance, given
participants from two groups (2 medical experts and 11 be-
ginners), in which each observer was shown with 80 samples.
For the Deformation score, an FFD-based [42] deformable
registration was applied to the synthesised MR to register to
a real MR at a similar imaging plane. The average Jacobian
(normalised to [0,1]) of the required deformation to complete
such registration was computed as the score consequently. The
underlying assumption is that a synthesised MRI with high-
quality tends to have a lower Jacobian when registering to the
real MRI.

C. Qualitative and Quantitative Performance

In this section, we firstly present qualitative results of the
synthesised MR and secondly quantitatively evaluate synthesis
results. In the testing phase, given a test 2D US image as
input, the corresponding MR image is synthesised accordingly.
Several US example inputs with corresponding synthesised
MR images are shown in Fig. 6. Note that the last column
(Real MR) is not in direct correspondence to the input US,

instead is only presented for reference. These reference MR
images are selected from a similar 3D position to the input
US images. As a result, although these Real MR images are
not perfectly aligned to the input US, we assume they are
valid references for readers to compare the visual performance.
It can be observed from the results in Fig. 6 that the visual
appearance of our synthesised MR images is very similar to the
real ones. Further the results generated using our approach are
visually superior to the results from an alternative approach,
CycleGAN [16] that is widely used for image synthesis tasks.
Additionally, the anatomical structures between the source US
and the synthetic MR are well preserved.

The quantitative performance is reported in Table II, where
the evaluation metrics of MOS and deformation are presented.
Furthermore, the proposed approach is compared with several
alternative methods including an autoencoder (AE), GAN [20],
and CycleGAN [16]. The presented results suggest that the
performance of the proposed US-to-MR synthesis framework
surpasses the other CNN-based architectures.

D. Ablation Study

To better understand the effectiveness of each proposed
components, we performed an ablation study by removing
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TABLE II
QUANTITATIVE PERFORMANCE FOR MRI SYNTHESIS WITH COMPARISON TO SEVERAL ALTERNATIVE APPROACHES ON MOS SCORE AND DEFORMATION

SCORE. THE STANDARD DEVIATION (±STD.) IS ALSO SHOWN. MOS THE HIGHER THE BETTER, WHILE DEFORMATION THE LOWER THE BETTER.

Settings AE GAN CycleGAN Ours (w/o bi-lat) Ours (w/o struct.) Ours (w/o att.) Ours Real

Expert 1.00± 0.00 2.05± 1.12 2.50± 0.53 3.05± 0.80 3.45± 1.30 3.30± 1.14 3.90± 0.81 4.35± 0.97

M
O

S↑

Beginner 1.01± 0.03 2.75± 1.28 3.42± 0.36 3.69± 0.71 3.87± 0.74 3.65± 0.73 4.08± 0.42 4.23± 0.67

Deformation ↓ 0.97± 0.09 0.78± 0.46 0.66± 0.46 0.55± 0.22 0.65± 0.39 0.47± 0.31 0.46± 0.24 0.00± 0.00
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Fig. 7. Anatomy-preserving performance for US-to-MR image synthesis on
synthetic patterns. For each example the first column shows the input US and
the second column the synthesised MRI by our approach.

each component at a time: the bi-directional latent consistency
module (w/o bi-lat), the structural consistency module (w/o
struct.), and the cross-modal attention module (w/o att.). The
corresponding qualitative and quantitative results are shown
in Fig. 6 and Table II, respectively. It can be observed from
the results that the model performs worse when removing any
of the above components. Specifically, the bi-directional latent
space and the cross-modal attention contribute the most to the
model performance, which validates our initial assumption of
the importance of the shared anatomical space. The structural
consistency contributes more to the detailed structures, which
is revealed by the deformation metric. The above qualitative
and quantitative results support the inclusion of each proposed
component in our model.

E. Anatomy-Preserving Analysis

In order to evaluate the performance of our approach with
respect to the anatomy-preserving property, we perform an
analysis based on synthetic abnormal data and real pseudo-
paired data:

a) Synthetic Abnormal Data: We first randomly apply
some synthetic patterns to the input US images and evaluate
whether these patterns are preserved during the synthesis of
the corresponding MR images. While various patterns can be
applied, here for simplicity, we use a square pattern, which we
apply in two ways: singular pattern and multiple patterns. Note
that our trained model is directly applied to these data without
any fine-tuning. Some examples are illustrated in Fig. 7. We
can see from the results that the applied pattern regions are
well preserved in the synthesised MR images. Note that in

TABLE III
QUANTITATIVE EVALUATION ON OUR SYNTHESISED MR IMAGES FOR

SYNTHETIC PATTERN PRESERVING ANALYSIS.

Settings AE GAN CycleGAN Ours

PSNR (dB)↑ 31.56± 3.91 34.63± 13.05 43.07± 15.07 99.37± 1.55

23_21
Sagittal_2

38_146
Coronal_1

Source USFull US Synth. MR 
(Ours)

Real full MR* Real cropped MR*Synth. MR 
(CycleGAN)

Fig. 8. Anatomy-preserving performance for US-to-MR image synthesis
on real pseudo-paired data. Key anatomical structures (marked by arrows)
are preserved when compared to the real MR images. *The presented MR
examples on the right side are not exactly aligned to the left US images.

the second example of the multiple-pattern, a larger pattern is
generated in the MRI compared to that in the input US. We
speculate that this is caused by the small distance between
the multiple patterns that makes the synthesis ambiguous for
the network. To quantify the anatomy-preserving property
of the proposed model, we further calculate the similarity
between the original pattern (multiple version) and the patterns
preserved in the synthesised MRI, using the same testing set
as aforementioned. The corresponding quantitative result is
reported in Table III, where we perform a comparison to the al-
ternative architectures of AE, GAN [20], and CycleGAN [16].
We can see from the result that our approach performs much
better than the others, which reveals the anatomy-preserving
property of the proposed method.

b) Real Pseudo-Paired Data: We obtained some
anonymised US data with corresponding MRI of the same
subject from the John Radcliffe Hospital. Such data can be
considered as “pseudo-paired”, as these US-MR pairs are not
exactly corresponding (infeasible to be captured at the exactly
same time). We first pre-process the data by the same scheme
as aforementioned and then feed the US data into our network.
Example synthetic MR results are shown in Fig. 8, in which
we can see that the anatomical structures are well preserved by
the synthesis process, with comparison to CycleGAN and the
real MR data from the same subject (right side). Note that our
trained model is directly applied to these data without any fine-
tuning. In addition, we also present a quantitative comparison
to other methods in Table IV. Specifically, a registration [43]
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TABLE IV
QUANTITATIVE EVALUATION FOR US-TO-MR IMAGE SYNTHESIS ON REAL

PSEUDO-PAIRED DATA.

Settings AE GAN CycleGAN Ours

SSIM ↑ 0.1595±0.0127 0.2271±0.0702 0.6041±0.0483 0.6250±0.0586

TABLE V
QUANTITATIVE EVALUATION ON OUR SYNTHESISED MR IMAGES WITH

COMPARISON TO THE 3D AUXILIARY APPROACHES. 3D-I, II, III ARE THE
CORRESPONDING APPROACHES SHOWN IN FIG. 2 (RIGHT).

Settings Ours (base) Ours (3D-i) Ours (3D-ii) Ours (3D-iii)

Deformation ↓ 0.46± 0.24 0.59± 0.33 0.44± 0.19 0.60± 0.37

is performed between the synthesised MR images and the
real cropped MR images and the SSIM (Structural Similarity
Index Measure) metric is used to measure the performance.
We can see that the proposed method outperforms the other
alternative solutions, which again validates the effectiveness
of our approach.

F. 3D Auxiliary Analysis

When 3D volumetric US data is available, our synthesis
framework can be easily adapted to leverage the additional
information, as described in Section III-D. Here we analyse
the effectiveness of including such auxiliary information.
Specifically, we present the deformation score of the three
approaches (see Fig. 2-right) with comparison to our 2D-based
approach, in Table V. Qualitative results with one failure case
(the third row) of our base model are also shown in Fig. 9.
From the results, we can observe that the 3D-ii solution (i.e.,
predicting the slice index as an auxiliary task) performs the
best among all the solutions. Although both augmenting with
neighbouring slices (3D-i) and slice index prediction (3D-ii)
provide additional 3D guidance for the target task, by feeding
additional slices, ambiguity is also introduced for the discrim-
inative prediction, which leads to slightly worse performance.
On the other hand, the task of directly reasoning the slice
index is based on the features from the latent space, which
shares anatomical information with the two data modalities
and is a less ambiguous task. Note that all these 3D-auxiliary
solutions perform better than the other alternative architectures
shown in Table II. The slice index reasoning task also performs
quite well, with an accuracy of 86%. Through our experiment,
we found that lower performance in this task leads to a
less accurate image synthesis task, which on the other side
validates the effectiveness of the slice index reasoning.

V. DISCUSSIONS

A. Potential Applications

a) Annotation Transfer between US and MRI: Data
annotation from human experts is a long-standing challenge
for data-driven medical image models, especially for those
data (e.g., US) where anatomical structures are difficult to
recognise. Thus, well-trained experts are necessary to annotate
such data, which is labour-intensive work. Even though, the

X_

Source US Ours (base) Ours (3D-i) Ours (3D-ii) Ours (3D-iii)

y_107_63

Fig. 9. Qualitative performance for US-to-MR image synthesis by 3D
auxiliaries. Our base model without 3D auxiliary is included for comparison.

accuracy of the annotation cannot be always guaranteed. On
the other hand, if the non-anatomical data has an anatomi-
cal correspondence in which annotation is much easier, the
labelling effort can be largely mitigated. By using the model
proposed in this work, corresponding MRI data can be gener-
ated for each US image. Since the data annotation for MRI is
much more efficient compared to that for US, the annotation
work can be first done on MRI and then transferred to the US.

b) Data Augmentation for Learning-Based Approaches:
A large amount of data is essential for deep learning models,
whereas the acquisition of some data modalities is rather chal-
lenging. Fetal MRI is a kind of such data, where routinely MRI
scan is usually not provided in most cases. As a result, data-
driven deep learning models for fetal MRI related problems are
infeasible to scale. In this case, if the correlation between fetal
MRI and sufficient routine US scans can be bridged, training
data for MRI can be generated. The proposed approach in
this work may be well-suited for this. By feeding US images
into our model, abundant corresponding MRI-like data can be
synthesised to train deep learning models for fetal MRI.

B. Generalisation

The input to our model is pre-processed (cropped and
aligned) US data instead of full US scans. Although promising
synthesis results have been achieved, one limitation of our
model lies in the input data assumptions. The generalisation to
full US scans will require further research. Since the proposed
method is data-driven and our model was trained with 23-week
data, it is not an optimal model for other gestational ages. Sim-
ilarly, as our model is trained on healthy data, it may not be the
optimal model for new US images with real pathologies. This
is a challenging problem for modern deep learning approaches
and could be possibly addressed by transfer learning strategies.
Without real paired data for evaluation, we cannot determine
if the synthesised images are realistic enough to transfer all
useful diagnostic information. Looking into this would be a
natural next step towards assessing potential clinical utility.
Finally, the proposed approach is a general framework that can
be readily extended to other body parts (e.g., heart), medical
imaging modalities (e.g., CT) and clinical application domains.
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VI. CONCLUSION

In this paper, we have presented an original method to
synthesise MR-like fetal brain images from unpaired US
images, via a novel anatomy-aware self-supervised framework.
Specifically, shared latent features between the two modalities
(US and MR) are first extracted, from which the target MRI
is synthesised under a group of anatomy-aware constraints.
A cross-modal attention module is introduced to incorporate
non-local guidance across the two modalities. An investigation
to leverage 3D volumetric auxiliaries is also presented. Exper-
imental results demonstrate the effectiveness of the proposed
framework both qualitatively and quantitatively, with compar-
ison to alternative CNN architectures.

We believe the proposed framework to be useful within
analysis tasks such as the alignment between US and MRI and
for communicating US findings to obstetricians and patients.
The generalisation to full US images is another interesting
direction worth investigation. Given more paired examples in
the future, the synthesis quality would also be improved.
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