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Abstract

Benefiting from the inductive biases learned from large-
scale datasets, open-vocabulary semantic segmentation
(OVSS) leverages the power of vision-language models,
such as CLIP, to achieve remarkable progress without re-
quiring task-specific training. However, due to CLIP’s pre-
training nature on image-text pairs, it tends to focus on
global semantic alignment, resulting in suboptimal perfor-
mance when associating fine-grained visual regions with
text. This leads to noisy and inconsistent predictions, par-
ticularly in local areas. We attribute this to a dispersed bias
stemming from its contrastive training paradigm, which is
difficult to alleviate using CLIP features alone. To address
this, we propose a structure-aware feature rectification ap-
proach that incorporates instance-specific priors derived
directly from the image. Specifically, we construct a region
adjacency graph (RAG) based on low-level features (e.g.
colour and texture) to capture local structural relationships
and use it to refine CLIP features by enhancing local dis-
crimination. Extensive experiments show that our method
effectively suppresses segmentation noise, improves region-
level consistency, and achieves strong performance on mul-
tiple open-vocabulary segmentation benchmarks. Project
page: https://qiming-huang.github.io/RAG-OVS/.

1. Introduction

Pretrained vision-language models such as CLIP [27] have
demonstrated remarkable performance in zero-shot and
open-vocabulary recognition tasks. Despite its effective-
ness in capturing global image-text alignment, CLIP suffers
from notable inductive biases at the local image level, lim-
iting its applicability to fine-grained visual understanding.
Specifically, CLIP was trained on image-text pairs without
explicit supervision, enforcing implicit alignment between
visual regions and textual descriptions. Consequently, it
captures coarse semantic correspondences rather than fine-

Figure 1. Illustration of the main idea and performance. High-
level feature region adjacency graphs (RAGs) introduce local
noise, while low-level colour-based RAGs maintain clean struc-
ture. The RAGs built on CLIP [27] and DINO [4] pretrained fea-
tures exhibit noisy and inconsistent connectivity in local regions
(see zoomed-in areas), when compared to the low-level based one.
This highlights the potential of low-level cues for tasks requiring
fine-grained local modelling, e.g. image segmentation. Bottom:
Comparison of average performance across multiple datasets us-
ing different features for RAG construction. C.-only: colour-based
features, and C. + G.: colour and texture features.

grained regional details, making it less effective for tasks re-
quiring high spatial granularity, such as training-free open-
vocabulary semantic segmentation (OVSS). This limitation
manifests as noisy and inconsistent region-level predictions
in training-free OVSS. As shown in Fig. 1, we observe that
features extracted from CLIP [27] and DINO [4] lack clear
discrimination across local (superpixel) regions, with high
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levels of noise and blurred boundaries. In contrast, simple
cues such as average colour differences are able to reflect lo-
cal structural differences more clearly. This motivates us to
ask: Can low-level region-adjacency information be lever-
aged to guide CLIP toward more localised attention?

These observations align with the contrastive training
paradigm of CLIP, which encourages semantic alignment
based on paired image-text data. Since high-resolution im-
ages naturally contain more discriminative details, they im-
prove the model’s ability to form stable and structured sim-
ilarity matrices. However, the inductive bias introduced
by CLIP’s global training procedure cannot be easily mit-
igated using its own representations. As shown in Fig. 1,
CLIP and DINO features are scattered and unstructured in
local regions. Fortunately, the image itself inherently pro-
vides instance-specific priors that are largely immune to
such global alignment biases. Specifically, the Region Ad-
jacency Graph (RAG), constructed purely from low-level
cues such as colour and texture, effectively captures spa-
tial relationships between regions without being affected
by CLIP’s global feature behaviour. Motivated by this,
we propose a structure-aware feature rectification approach
that incorporates RAG-based guidance into attention mech-
anisms. By constructing RAGs from low-level features
(e.g. colour, GLCM texture statistics), we introduce local
structure-aware biases to guide patch-level attention and
similarity computation.

Extensive experiments validate that the proposed method
enhances training-free open-vocabulary semantic segmen-
tation performance. It improves regional consistency, re-
duces noise in segmentation outputs, and better preserves
fine-grained structures, which are clearly visible in qualita-
tive results (see Fig. 5).

2. Related Work

2.1. Contrastive Language-Image Pre-training
Contrastive Language-Image Pre-training (CLIP) [27] is a
large-scale multi-modal foundation model that leverages
contrastive learning to align visual and textual features,
enhancing generalisation on unseen samples. Due to its
strong zero-shot capabilities, CLIP has been widely adopted
in Few-Shot/Zero-Shot Learning (FSL/ZSL) [17, 20, 24,
45, 46], Prompt Learning [17, 20, 45, 46], and Out-of-
Distribution (OoD) detection tasks [33].

More recently, researchers have extended CLIP to dense
prediction tasks [30, 38, 41, 42], such as semantic segmen-
tation [24, 34]. However, a major challenge in utilising
CLIP is the inherent noise in its features. Li et al. [21] anal-
yse this issue from an explainability perspective and pro-
pose self-attention improvements to enhance CLIP’s perfor-
mance in open-vocabulary tasks.

Unlike conventional pipelines that fine-tune pre-trained

models on additional datasets, CLIP’s encoder is typically
kept frozen to maintain its alignment with the text feature
space [44]. As a result, researchers tend to use CLIP di-
rectly as an encoder to extract preliminary features while fo-
cusing on designing sophisticated decoders [7, 9, 13, 28, 39]
to refine image-level representations for dense prediction
tasks.

2.2. Open-Vocabulary Semantic Segmentation

Open-vocabulary semantic segmentation (OVSS) extends
segmentation [26, 35, 36] and refers to segmenting seman-
tic regions via textual names or descriptions for the open
world without any mask annotations. Early works [44] ver-
ify the importance of modal alignment in CLIP, and com-
mon downstream fine-tuning may destroy its generalisa-
tion ability. MaskCLIP [44] attempts to improve the Vi-
sion Transformer (ViT) [10] structure of CLIP to allow
the model to obtain coarse feature localisation, and com-
bines transductive learning to improve performance. CLIP-
Surgery [22] analyses the difficulty of the current semantic
segmentation task introduced by CLIP from the perspec-
tive of image-text noise, and makes certain improvements
to the model using the idea of self-attention. SCLIP [37]
inherits the idea of self-attention from MaskCLIP and di-
rectly adapts the improved CLIP structure to the semantic
segmentation task.

Both CLIP-Surgery and SCLIP utilise the idea of self-
attention to improve CLIP, while only CLIP-Surgery men-
tions the noise problem caused by the open category of text.
None of them explores and analyses why CLIP lacks the
semantic correlation between patches. Our work comple-
ments this point that it is the global patch formed during the
attention interaction between [CLS] token and patches that
leads to this.

Beyond architectural improvements, recent work scruti-
nizes OVS evaluation protocols regarding task ambiguity.
Huang et al. [15] argue that rigid pixel-wise metrics con-
tradict the open-world premise by penalizing plausible syn-
onyms (e.g., ‘sofa’ vs. ‘couch’). They propose a mask-
wise evaluation protocol, demonstrating that mitigating cat-
egory ambiguity significantly enhances model capabilities
and suggesting a need for evolved benchmarks.

Regarding methodology, recent approaches leverage
CLIP as an encoder within a ”mask generation and
classification” pipeline, inspired by MaskFormer [5] and
Mask2Former [6]. These methods utilise pixel and query
decoders to refine features and generate masks via query
embeddings. By calculating the similarity between these
embeddings and text prompts, the model weights query
masks to produce final object boundaries and categories.



2.3. Training-free OVSS
Trident [31] proposes a training-free framework that ad-
dresses CLIP’s resolution limitation in semantic segmen-
tation through a splice-then-segment approach. Trident
first splices features extracted by CLIP and DINO from
sub-images, then leverages the Segment Anything Model
(SAM) for global aggregation, expanding the receptive
field and improving segmentation performance. The kNN-
CLIP [12] proposes a training-free approach for open-
vocabulary continual segmentation that mitigates catas-
trophic forgetting. Instead of traditional continual training,
kNN-CLIP augments the model with a database of instance
embeddings, enabling segmentation methods to adapt to
growing vocabularies without retraining or high memory
costs. These methods primarily modify the internal atten-
tion structure of CLIP-like models to better capture rela-
tionships between image regions and textual descriptions.

In contrast, our approach takes a different direction by
directly modifying the visual patch embeddings instead of
adjusting attention maps. Specifically, we improve the ac-
curacy of the visual patch-text embedding similarity matrix,
ensuring a more precise alignment between visual and tex-
tual representations. By refining the embedding space at
the patch level, our method enhances feature interaction and
boosts segmentation performance, complementing and sur-
passing attention-based optimisation strategies.

3. Preliminaries of Training-free OVSS
Training-free OVSS aims to segment an image into mean-
ingful regions by assigning semantic labels given arbitrary
vocabulary, without requiring extra training. Instead of
learning a segmentation model with annotated data, this ap-
proach leverages large pretrained vision-language models,
such as CLIP, to directly match visual features with text
embeddings through similarity computations. The visual
patches embedding {vi}Ni=1, where each patch vi is repre-
sented by a feature embedding of dimension 1 × RD, ex-
tracted from the vision encoder of CLIP. The text embed-
ding {tj}Mj=1 is obtained from the text encoder, where each
tj corresponds to a text and is also represented as a feature
embedding of dimension 1× RD. The core idea is to com-
pute the cosine similarity between each visual patch feature
and all text embeddings:

si,j =
⟨vi, tj⟩
∥vi∥∥tj∥

, (1)

where si,j is the similarity score between visual patch vi
and text embedding vj . The semantic label for each visual
patch is assigned based on the highest similarity score:

ŷi = argmax
j

si,j , (2)

where ŷi denotes the predicted semantic label for patch vi.

4. Structure-Aware Feature Rectification
Due to CLIP’s global training paradigm on image-text
pairs, it lacks the capability for fine-grained local align-
ment [2, 14, 19, 29], resulting in structural inconsistency
and noisy predictions when directly applied to segmenta-
tion. This issue is especially pronounced in training-free
open-vocabulary semantic segmentation, where no addi-
tional data is available for model adaptation. To mitigate
this, our method leverages a region adjacency graph (RAG)
constructed from image low-level features to enhance struc-
tural awareness. It comprises two key modules: RAG-
guided Attention, which introduces a structure-aware bias
into CLIP’s attention mechanism to encourage local seman-
tic consistency; and Similarity Fusion, which refines cross-
modal similarity computation to suppress noisy matches.

4.1. RAG-guided Attention
Region adjacency graph (RAG) is a graph-based represen-
tation that captures the spatial relationships between image
regions. Formally, a RAG is defined as an undirected graph
G = (V,E), where each node vi ∈ V corresponds to a
low-level region Ri (e.g. a superpixel), and an edge eij ∈ E
exists if regions Ri and Rj are spatially adjacent in the im-
age. By encoding both the appearance and structural prox-
imity of regions, the RAG provides a compact yet informa-
tive structure that reflects the local layout of the image.

RAG construction. However, traditional RAGs are typ-
ically constructed based on the average colour differences
between adjacent superpixel regions. The weight of each
edge eij is defined as:

wcolor
ij = ∥µi − µj∥2, (3)

where µi and µj denote the mean RGB colour vectors of re-
gions Ri and Rj , respectively. While this formulation pro-
vides clear local structural cues—as illustrated in Fig. 1—
colour differences alone are insufficient for robust region
discrimination. In real-world scenarios, colour ambiguity
often arises, such as between a “white toilet” and a “white
wall”. To build a more robust RAG, we incorporate not
only colour differences but also texture information. Specif-
ically, for each region Ri, we compute the Grey-Level Co-
occurrence Matrix (GLCM) Pi and extract several statistical
features from it. The edge weight is redefined as a combi-
nation of colour and texture similarities:

wij = wcolor
ij + wtexture

ij , (4)

where wtexture
ij is computed using the GLCM-based feature

difference:

wtexture
ij =

∑
k

∣∣∣f (k)
i − f

(k)
j

∣∣∣ , (5)



Figure 2. Illustration of superpixel-to-patch encoding. The dis-
tance between two patches is first represented as a list of all pair-
wise superpixel regions (□,□), then the patch distance is com-
puted from this list using Eq. 8.

in which f
(k)
i represents the k-th texture feature (e.g.

contrast, homogeneity, energy, correlation) extracted from
region Ri’s GLCM. These features are defined as fol-
lows: contrast: Contrast =

∑
m,n(m − n)2Pi(m,n),

homogeneity: Homogeneity =
∑

m,n
Pi(m,n)
1+|m−n| , energy:

Energy =
∑

m,n Pi(m,n)2, and correlation: Correlation =∑
m,n(m−µm)(n−µn)Pi(m,n)

σmσn
, where Pi(m,n) denotes the

normalized co-occurrence probability at position (m,n),
and µm, µn, σm, σn are the means and standard deviations
of the marginal distributions of Pi.

Superpixel-aligned patch encoding. Another challenge
lies in the mismatch between the superpixel-based RAG and
the patch-based tokenisation used in transformers, where
inputs are typically divided into fixed-size square patches.
To address this, we design a mechanism that preserves the
structural advantages of superpixels—such as their abil-
ity to align flexibly with object boundaries—while en-
abling compatibility with patch-wise representations re-
quired by standard transformer attention. As illustrated
in Fig. 2, for two adjacent patches, denoted as □ and □,
the computation of their edge weight is based on all pair-
wise distances between the superpixel regions contained
within each patch. Specifically, let patch i contain su-
perpixels {si1, si2, . . . , sim} and patch j contain superpixels
{sj1, s

j
2, . . . , s

j
n}. We compute the pairwise distances:

Dij =
{
d(sip, s

j
q) | sip ∈ i, sjq ∈ j

}
, (6)

where d(·, ·) is the distance function defined in Eq. 5.
Therefore the computed edge weight wij is a list rather than
a scalar, i.e.

wij =
[
d(si1, s

j
1), d(s

i
1, s

j
2), . . . , d(s

i
m, sjn)

]
. (7)

To preserve the structural variations within each patch,
we compute the mean and variance of Dij , and use them

Image Gaussian Kernel RAG-bias Bilateral

Figure 3. Illustration of different attention bias mechanisms.
The first column shows the input images. The second column visu-
alises the traditional Gaussian kernel, which models spatial prox-
imity in a local window. The third column shows the RAG-bias
computed from the Region Adjacency Graph (RAG), capturing
structural relationships between neighbouring regions. The fourth
column combines both the Gaussian kernel and the RAG-bias to
form a bilateral attention bias, which accounts for both spatial dis-
tance and local structure.

as the final edge weight representation between patch i and
patch j:

µij =
1

|Dij |
∑

d∈Dij

d, σ2
ij =

1

|Dij |
∑

d∈Dij

(d− µij)
2. (8)

We then define the final edge weight list as (we use the
standard deviation σi,j):

wfinal
ij = [µij , σij ]. (9)

RAG-guided attention via RAG bias. We leverage the
constructed Region Adjacency Graph (RAG) to compute a
structure-aware prior, referred to as the RAG bias, which
serves as a local structural constraint in the attention mech-
anism. As illustrated in Fig. 3 (third column), the RAG bias
is calculated for each token (patch) based on the topology
of its local neighbourhood in the RAG.

Specifically, for a node (patch) i, we consider its adjacent
neighbours N (i)—defined either as 4-connected (cross-
shaped) or 8-connected neighbours. For each neighbour
j ∈ N (i), we use the final edge weight wfinal

ij = [µij , σ
2
ij ].

The RAG bias bij is then computed by averaging the struc-
tural affinities from node i’s neighbourhood:
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Figure 4. Overview of the proposed RAG-guided attention
mechanism. The bilateral attention bias is computed by combin-
ing a spatial Gaussian kernel with a structure-aware RAG-bias.
This combined bias is integrated into the attention weights to en-
hance structural sensitivity. Right: visualisation of the Gaussian
and bilateral attention maps.

bij =
1

|N (i)|
∑

k∈N (i)

(µik + σik) . (10)

Although the RAG bias bi,j effectively encodes struc-
tural context by aggregating information from a node’s lo-
cal neighbourhood, it is fixed across all positions within the
same image. This static nature makes it insufficient for cap-
turing the pairwise relationships required in self-attention,
where different attention weights are computed between ev-
ery pair of tokens. To address this limitation, we draw inspi-
ration from bilateral filtering and introduce a more flexible
bias mechanism, Bilateral Bias, that combines both spatial
proximity and structural similarity. Specifically, we com-
pute a spatial Gaussian kernel g(i, j) between any two po-
sitions i and j:

g(i, j) = exp

(
−∥pi − pj∥2

2σ2

)
, (11)

where pi and pj denote the 2D coordinates of patches i and
j, and σ controls the spatial range.

We then define the bilateral bias Bij as the product of the
spatial kernel and the structural RAG bias:

Bij = g(i, j) · exp (bi,j) (12)

as shown in Fig. 3 (fourth column). Then the final biased
attention is computed as:

attenbiased
ij = softmaxj(

qi · kj√
d

+Bij). (13)

The overall of this RAG-guided attention process is
shown in Fig. 4.

4.2. Similarity Fusion Module
Although introducing a bias that emphasises local structures
helps the model attend to fine-grained region boundaries
and maintain local consistency, it may also cause the model
to respond to irrelevant local noise, such as background tex-
tures, illumination variations, or boundary artefacts. To mit-
igate this, we propose similarity fusion.

Specifically, given the original visual-textual similarity
matrix Si,j defined in Eq. 1, we compute a refined similar-
ity matrix S̃i,j by first applying a Gaussian kernel to smooth
the visual features. Let v̂i denote the smoothed visual fea-
ture at position i; we can then compute the cosine similarity
between the smoothed visual features and the text feature t:

S̃i,j =
v̂i · tj

∥v̂i∥ ∥tj∥
. (14)

Finally, we fuse the original and smoothed similarities
using geometric mean fusion:

Sfused
i,j =

(
S̃i,j

)α

· (Si,j)
1−α

. (15)

5. Experiment
5.1. Implementation Details
Datasets. We evaluate our method on the following seg-
mentation benchmarks, whose names are abbreviated (in
parentheses) to conserve table space: PASCAL VOC 2012
(V21) [11], ADE20K-150 (ADE) [43], PASCAL Context
(PC60) [25], COCO-Stuff (C-Stf) [3], Cityscapes (City)
[8], COCO-Object (C-Obj) [23]. Additionally, alongside
the original benchmarks on these datasets, we follow [37]
and evaluate on variants of PASCAL VOC 2012 (V20) and
PASCAL Context (PC59) in which the background class is
removed from the evaluation.

Baselines. We compare our method to a set of relevant
works in OVSS, including: MaskCLIP [44], ReCo [32],
GroupVit [40], SCLIP [37], OVDiff [16], CLIPtrace [29],
NACLIP [14], and ProxyCLIP [19]. It is worth noting
that, for the sake of fair comparison, none of the methods,
including our baselines, involve any post-processing dur-
ing evaluation. This includes commonly used techniques
such as Conditional Random Fields (CRF), multi-scale test-
ing, mask refinement, or other enhancement strategies. All
methods are evaluated based on their raw model outputs to
ensure a fair and consistent comparison. Specifically, we
adopt SCLIP, CLIPtrace, NACLIP, and ProxyCLIP as our
baselines and integrate our proposed module into their orig-
inal frameworks. All other settings strictly follow those de-
scribed in the respective original papers.



Table 1. Quantitative results on various OVSS benchmarks. Our method consistently improves different CLIP-based baselines across
all datasets, showing its generality and effectiveness. Best performance in bold.

Method Venue V21 PC60 C-Obj V20 PC59 Stuff City ADE Avg

CLIP [27] ICML’21 16.4 8.4 5.6 41.9 9.2 4.4 5.0 2.9 11.7
GroupViT [40] CVPR’22 52.3 18.7 27.5 79.7 18.5 23.4 10.4 15.3 30.7
MaskCLIP [44] ECCV’22 43.4 23.2 20.6 74.9 26.4 16.7 24.9 11.9 30.3
Reco [32] NeurIPS’22 25.1 19.9 15.7 57.7 21.6 22.3 11.2 14.8 23.5
OVDiff [16] ECCV’24 66.3 29.7 34.6 80.9 32.9 20.3 23.4 14.1 37.8
CLIP-Surgery [21] Pattern Recognition 59.0 30.1 30.2 80.1 33.9 22.1 31.8 15.8 37.9
↪→ + Ours - 61.1 32.2 31.8 81.3 34.8 23.6 33.5 17.4 39.4

SCLIP [37] ECCV’24 59.1 30.4 30.5 80.4 34.2 22.4 32.2 16.1 38.2
↪→ + Ours - 61.9 32.9 32.3 81.8 35.0 24.1 33.9 18.1 39.9

CLIPtrace [29] ECCV’24 53.0 30.8 33.8 81.2 35.0 24.1 35.0 17.0 38.7
↪→ + Ours - 56.2 32.1 35.2 83.8 36.4 25.1 36.6 18.5 40.5

NACLIP [14] WACV’25 58.9 32.2 33.2 79.7 35.2 23.3 35.5 17.4 39.4
↪→ + Ours - 60.3 33.5 34.6 81.2 36.0 25.7 36.8 19.1 40.9

ProxyCLIP [19] ECCV’24 61.3 35.3 37.5 80.3 39.1 26.5 38.1 20.2 42.3
↪→ + Ours - 62.9 36.6 38.9 82.1 39.8 27.7 40.1 21.1 43.6

Implementation details. All experiments are conducted
on a single NVIDIA RTX 4090 GPU. We adopt mean
Intersection-over-Union (mIoU) as the evaluation metric
across all experiments. For the Similarity Fusion Module,
we set the weighting parameter α to 0.6, selected based on
the best performance on cocostuff171-val. The Gaussian
kernel used in the module has a kernel size of 3 and a stan-
dard deviation σ of 3. SLIC [1] is used as our default super-
pixel method, with n segments=300 and compactness=10.
More details about the hypaparameter sensitivity analysis
can be found in Supplementary Material Section S1.

5.2. Results

Table 1 presents quantitative results on various OVSS
benchmarks, comparing our method with several state-of-
the-art baselines. As shown, integrating our proposed mod-
ule into different CLIP-based models consistently improves
performance across all datasets. Notably, our approach
yields gains on challenging datasets such as ADE20K,
Cityscapes, and PC60, regardless of the baseline model.
These improvements validate the effectiveness and gener-
ality of our method in enhancing open-vocabulary semantic
segmentation performance. Specifically, our method boosts
the average mIoU by +1.8 on SCLIP (38.2 → 40.0), +1.8
on CLIPtrace (38.7 → 40.5), +1.5 on NACLIP (39.4 →
40.9), and +1.4 on ProxyCLIP (42.3 → 43.7). These results
highlight the generality and effectiveness of our approach in
enhancing training-free CLIP-based open-vocabulary seg-
mentation models.

Table 2. Component ablation results based on the NACLIP model.

Method V21 PC60 C-Obj V20 PC59 Stuff City ADE

w/o 58.9 32.2 33.2 79.7 35.2 23.3 35.5 17.4
SimFusion RAG-bias

✔ ✗ 59.4 32.6 33.5 80.5 35.9 24.2 36.0 18.1
✗ ✔ 60.0 33.1 34.2 81.0 36.1 25.5 36.7 19.0
✔ ✔ 60.2 33.4 34.4 81.0 36.2 25.8 36.9 19.2

Table 3. Performance comparison using different feature types
to construct RAG edges. The top half shows results under stan-
dard input conditions, while the bottom half (marked with ❀) rep-
resents experiments with colour perturbations to evaluate robust-
ness. C.-only denotes colour-only input, and C. + G. indicates
colour with additional GLCM texture statistics. Bold numbers
highlight the best performance per column and per setting.

RAG edge V21 PC60 C-Obj V20 PC59 Stuff City ADE

CLIP feat 55.5 28.4 23.9 74.3 33.2 19.2 28.9 14.9
DINO feat 55.2 27.9 25.2 75.3 32.9 20.2 29.2 15.4
C.-only 58.6 32.1 32.2 80.0 35.8 24.0 35.2 17.2
C. + G. 60.0 33.1 34.2 81.0 36.1 25.5 36.7 19.0
CLIP feat ❀ 53.0 26.7 22.4 72.0 30.2 16.4 25.3 12.8
DINO feat ❀ 53.5 25.4 21.9 71.8 31.7 18.9 26.0 13.0
C.-only ❀ 50.4 27.6 25.3 74.2 29.9 18.0 30.4 10.2
C. + G. ❀ 58.5 32.0 32.9 79.9 35.1 23.9 35.8 18.2

5.3. Ablation Study
In this section, we conduct extensive ablation studies to
analyse our model. Unless otherwise specified, the baseline
used in these ablation studies is NACLIP [14].

Ablation on proposed components. Table 2 presents
a component-level ablation study based on the NACLIP
model, evaluating the individual and combined contribu-



tions of the Similarity Fusion module (SimFusion) and the
RAG-bias mechanism. The baseline model without either
component achieves an average mIoU of 39.4. Introducing
SimFusion or RAG-bias individually improves the perfor-
mance to 40.0 (+0.6) and 40.9 (+1.5), respectively. When
both components are enabled, the model reaches the highest
performance with an average mIoU of 41.2, showing con-
sistent gains across all datasets.

These results suggest that the two components are com-
plementary and jointly contribute to performance improve-
ments. SimFusion enhances cross-region similarity integra-
tion, while RAG-bias introduces semantically meaningful
structural bias to the attention. Notably, RAG-bias yields a
greater standalone improvement than SimFusion, highlight-
ing its stronger impact on the model’s effectiveness.

Ablation on RAG edge. Table 3 presents an ablation
study comparing different feature types for constructing
RAG edges. We evaluate four configurations: CLIP fea-
tures, DINO features, colour-only input (C.-only), and
colour with additional GLCM texture statistics (C. + G.).
The top half reports results under standard conditions, while
the bottom half (grey-shaded rows, marked with ❀) in-
cludes colour perturbations to assess robustness. Since our
RAG is primarily constructed using low-level features, it
may be susceptible to common image perturbations. To
analyse model behaviour under such conditions and eval-
uate robustness, we apply random colour jitter using the
ColorJitter function with the following parameters: bright-
ness=0.2, contrast=0.3, saturation=0.3, and hue=0.1. This
augmentation introduces appearance shifts while preserving
semantic content.

We find that combining colour with GLCM texture
(C.+G.) consistently outperforms other settings under both
clean and perturbed conditions. Under colour jitter, C.-only
degrades noticeably, while C.+G. remains strong (e.g. 35.8
on City, 18.2 on ADE), surpassing even CLIP and DINO.
This confirms the effectiveness of integrating texture fea-
tures for robust RAG edge construction.

Ablation on the number of neighbours. When comput-
ing the RAG-bias (see N (i) in Eq. 10), we can aggregate
information from a varying number of neighbouring nodes.
Table 4 reports the results using 4 and 8 neighbours. While
using 8 neighbours yields slightly better performance, the
differences are marginal. This suggests that, once the RAG
is constructed, our method is relatively insensitive to the
number of aggregated neighbours.

Ablation on patch size and image size. Since our pro-
posed superpixel-aligned patch encoding method computes
representations based on the superpixel regions within each
patch, both the patch size and input image resolution may

Table 4. Performance comparison with different neighbour con-
figurations. “#neigh.” is the number of neighbours.

#neigh. V21 PC60 C-Obj V20 PC59 Stuff City ADE

4 60.1 33.0 34.2 81.0 35.8 25.6 36.5 19.0
8 60.2 33.4 34.4 81.0 36.2 25.8 36.9 19.2

Table 5. Effect of patch size and image resolution on performance.
The results are reported on the NACLIP model.

Patch Img V21 PC60 C-Obj V20 PC59 Stuff City ADE

B/16 336 60.2 33.4 34.4 81.0 36.2 25.8 36.9 19.2
B/32 336 57.2 30.0 31.2 78.7 34.3 22.7 32.5 16.4
B/16 224 58.5 31.2 30.9 79.2 35.0 23.6 34.0 16.1
B/32 224 55.2 28.0 29.6 75.0 31.7 20.0 30.6 13.6

Table 6. Comparison of different superpixel segmentation meth-
ods for RAG construction. Best performance in bold. A discus-
sion on using masks generated by the Segment Anything Model
(SAM) [18] is provided in Supplementary Material Section 5.

Method V21 PC60 C-Obj V20 PC59 Stuff City ADE

SLIC 60.2 33.4 34.4 81.0 36.2 25.8 36.9 19.2
Watershed 58.2 32.8 33.2 80.2 35.3 23.2 34.9 18.2
Felzenszwalb 55.2 30.1 28.9 76.9 33.0 22.5 32.9 14.5

affect the model performance. As shown in Table 5, us-
ing smaller patch sizes (e.g. B/16 vs. B/32) and higher
image resolutions (e.g. 336 vs. 224) consistently leads to
better performance across all benchmarks. In particular, the
best results (an average mIoU of 40.9) are achieved with the
B/16 patch size and 336 image resolution setting. These re-
sults suggest that finer spatial granularity in the patch-level
representation helps better capture region-boundary align-
ment with superpixels, enhancing segmentation quality.

Ablation on different superpixel methods. In Table 6,
we compare different superpixel segmentation methods for
RAG construction, including SLIC, Watershed, and Felzen-
szwalb. Among them, SLIC achieves the best overall per-
formance, while Felzenszwalb performs the worst across
all benchmarks. We attribute the weaker performance of
Felzenszwalb to its irregular and region-driven segmenta-
tion outputs, which often deviate from the grid-like patch
structure used in our superpixel-to-patch encoding. In con-
trast, SLIC produces more compact and uniformly shaped
superpixels that align better with patch boundaries, making
it more compatible with our proposed encoding strategy.

Ablation on α in similarity fusion. Table 8 shows the
performance of our model under different weighting pa-
rameter α in the Similarity Fusion module. We observe
that the module with any α > 0 consistently improves
performance over the baseline (w/o), suggesting the effec-



Table 7. Efficiency analysis of our method. Comparison of in-
ference speed (FPS) and computational cost (FLOPs) on different
baseline models.

Method FPS (∆) FLOPs (∆)

CLIP / + Ours 72.5 → 71.1 (-1.4) 41.7 →≈41.7 (+0.0)
SCLIP / + Ours 68.8 → 66.9 (-1.9) 44.2 →≈44.2 (+0.0)
ProxyCLIP / + Ours 52.9 → 51.5 (-1.4) 81.1 →≈81.1 (+0.0)

Table 8. Performance comparison under different α values on
SimFusion module based on the NACLIP model.

α V21 PC60 C-Obj V20 PC59 Stuff City ADE

w/o 58.9 32.2 33.2 79.7 35.2 23.3 35.5 17.4
0.1 58.9 32.2 33.2 79.7 35.2 23.3 35.5 17.6
0.2 59.0 32.5 33.4 79.9 35.3 23.5 35.6 17.7
0.5 59.2 32.5 33.6 80.3 35.8 24.5 35.9 18.0
0.6 59.4 32.6 33.5 80.5 35.9 24.2 36.0 18.1
0.7 58.9 32.0 33.1 80.3 35.8 24.1 35.9 18.0

tiveness of combining the original similarity matrix with its
smoothed counterpart. This fusion helps suppress noisy or
unreliable similarity signals, leading to more robust region
aggregation. The best performance is achieved at α = 0.6,
which is used as the default setting in all experiments.

Generalisation analysis. We provide an extensive analy-
sis of our model’s generalisation capabilities in Section S2
of the Supplementary Material, evaluating its performance
on challenging transformations such as overexposure, un-
derexposure, grayscale, style transfer, and texture destruc-
tion. In addition, we assess its zero-shot performance on a
remote sensing dataset, with results reported in the Supple-
mentary Material in Table S2 and Fig. S5.

Failure case analysis. Our method’s primary failure
cases occur in underexposed conditions, where the loss of
fine-grained local details causes our attention bias to be mis-
weighted. For a detailed analysis of these failure cases,
please refer to Section S3 in the Supplementary Material.

Qualitative results. In Fig. 5 we present qualitative com-
parisons between our method and CLIPtrace. As illus-
trated, our approach consistently yields more coherent and
accurate segmentation results, especially in challenging re-
gions such as object boundaries, fine-grained structures, and
texture-rich areas. The highlighted areas (in red boxes) em-
phasise our model’s ability to preserve local consistency
and object integrity, reducing the fragmented or noisy pre-
dictions that are often observed in the CLIPtrace outputs.
These qualitative observations underscore the effectiveness
of our proposed components in enhancing performance at
finer levels of granularity.

Computational cost. As shown in Table 7, our method
is computationally efficient. When integrated with vari-
ous baselines, it introduces no additional FLOPs while only
causing a negligible decrease in inference speed (FPS).

Image GT CIIPtrace Ours

Figure 5. The qualitative results of our method. For more chal-
lenging cases, such as grayscale and stylised images (e.g. oil paint-
ings), please refer to Figs. S4, S6, and S7 in the Supplementary
Materials.

6. Conclusion
In this work, we proposed a new feature rectification ap-
proach for training-free open-vocabulary semantic segmen-
tation. Our method leverages a Region Adjacency Graph
(RAG) to refine visual patch embeddings and address local
inconsistency in CLIP-based models. Specifically, we intro-
duced a RAG-bias to guide attention toward semantically
relevant regions, and a Similarity Fusion module to better
align visual patches with textual categories. Extensive ex-
perimental analysis showed the effectiveness and generalis-
ability of our approach, presenting consistent improvements
across multiple datasets without additional training. Ab-
lation studies further highlighted the importance of neigh-
bourhood design and RAG construction, providing insights
into utilising low-level priors for semantic refinement.
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