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Abstract. In medical imaging, manual annotations can be expensive
to acquire and sometimes infeasible to access, making conventional deep
learning-based models difficult to scale. As a result, it would be bene-
ficial if useful representations could be derived from raw data without
the need for manual annotations. In this paper, we propose to address
the problem of self-supervised representation learning with multi-modal
ultrasound video-speech raw data. For this case, we assume that there is
a high correlation between the ultrasound video and the corresponding
narrative speech audio of the sonographer. In order to learn meaningful
representations, the model needs to identify such correlation and at the
same time understand the underlying anatomical features. We designed
a framework to model the correspondence between video and audio with-
out any kind of human annotations. Within this framework, we introduce
cross-modal contrastive learning and an affinity-aware self-paced learn-
ing scheme to enhance correlation modelling. Experimental evaluations
on multi-modal fetal ultrasound video and audio show that the proposed
approach is able to learn strong representations and transfers well to
downstream tasks of standard plane detection and eye-gaze prediction.
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1 Introduction

Deep learning-based medical image analysis approaches rely heavily on anno-
tated training data, which limits the progress in medical image analysis if a large
dataset has to be manually annotated for every new task. Extracting meaning-
ful representations directly from unlabelled data is therefore an important and
interesting sub-topic in learning-based medical image analysis.

Several approaches in the literature have been explored to deal with the prob-
lem of learning from unlabelled data, which is usually termed as “self-supervised
representation learning” (or unsupervised learning in some works). The com-
mon practice is to pre-train a model on unlabelled data according to a pretext
task and then to fine tune the model with some specific target tasks to evaluate
the learned representations. Typical pretext tasks include colourisation [19], and
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rotation prediction [5] for images; and tracking [16], temporal ordering [10] for
videos. Some recent studies propose to learn representations by contrastive pre-
dictive coding [7,11] or contrastive learning [4,6], and showed a powerful learning
capability. There are also works have considered medical images, e.g., predicting
the distance between patches [15], Rubik’s cube recovery [20] and anatomy-
aware joint reasoning [9]. However, the above-mentioned approaches are single
modality. Some recent approaches have investigated learning from natural audio
and video modalities [1, 12], where the pretext task is designed as video-audio
alignment. In this case the audio and video are assumed to be in dense corre-
spondence. Such multi-modal learning has not been explored for medical data
before. Audio data rarely exists for medical images and even when available, it is
mostly narrative diagnosis/interpretation speech, which has a sparse correlation
with the visual data, making the task rather challenging.

In this paper, we propose to address the problem of self-supervised cross-
modal representation learning for ultrasound video with corresponding narrative
speech audio, both of which are captured on-the-fly without any manual anno-
tations. Unlike other medical imaging modalities that are with clear anatomical
structures (e.g., MRI and CT), ultrasound video is much more difficult to inter-
pret by eye for humans although experts are adept at interpreting anatomy in the
acoustic patterns. As a result, learning representations automatically from unla-
belled ultrasound data is rather challenging. On the other hand, in our case we
have synchronised narrative speech from the sonographer accompanied with the
ultrasound video. The basic assumption here is that by leveraging cross-modal
correlations, a useful representation can be learned. To this end, we propose
to learn the anatomical representations from ultrasound video-speech data by
identifying the affinity (i.e., association strength) between the two modalities.
Specifically, we first randomly sample video-speech samples from our dataset,
from which positive and negative pairs are generated. Unlike prior works that
use straightforward simple training pairs, in this work we instead leverage hard-
negative as well as hard-positive pairs for training, in order to force the model to
learn harder. Additionally, we further introduce cross-modal contrastive learn-
ing to encourage a positive pair to have strong affinity while a negative pair
will have weaker affinity in a projected shared latent space. In our diagnostic
narrative speech audio, we observe that background noise (e.g., button clicks, air
conditioning) and unrelated conversation (e.g., about the weather, travel etc.)
exist in the raw data, which degrades the representation learning. To mitigate
this problem, we propose an affinity-aware self-paced learning curriculum over
the representation learning process.

To evaluate the proposed self-supervised learning framework, we consider
two ultrasound-related downstream tasks: standard plane detection and eye-
gaze saliency prediction. Experimental results presented show that the proposed
approach significantly improves the performance of downstream tasks without
referring to any manual annotations. The experiments also reveal that by lever-
aging speech data, useful representations can be learned when transferring to
other tasks, outperforming single-modal learning methods.
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Fig. 1. Main idea of the proposed self-supervised video-speech representation learning
framework. A model is trained to identify whether a sampled video-speech pair is
anatomically correlated, and at the same time encourage the projected embeddings
from correlated pair to lie on the same anatomical sphere (e.g., the green one).

The main contributions of this paper are summarised as follows:

– We propose, to our knowledge, the first self-supervised video-speech repre-
sentation learning approach for ultrasound data.

– We introduce cross-modal contrastive learning and affinity-aware self-paced
learning for ultrasound video-speech cross-modal representation learning.

– The proposed approach is demonstrated to be effective for two downstream
tasks.

2 Method

In this section, we present the proposed self-supervised contrastive video-speech
representation learning approach in detail. The main idea of the proposed ap-
proach is to build the correlation between video and narrative speech data
by both explicit optimisation and implicit regularisation. In this paper, we
demonstrate the idea with fetal ultrasound video synchronised with correspond-
ing speech. A novel self-supervised learning framework is proposed accordingly.
Fig. 1 illustrates the main idea of the proposed framework.

2.1 Video-Speech Representation Learning

Speech audio, as an additional modality to visual data (e.g., images and videos),
is recorded on-the-fly without external annotations. The idea is to use the dis-
criminative power of audio to understand visual data where ambiguity may ex-
ist. The basic assumption to learn a cross-modal (ultrasound video and corre-
sponding speech from sonographer in our case) representation is that the two
modalities share similar anatomical meanings at the same timestamp. In our
case, if a model can successfully identify whether a video clip and a speech clip
are correlated or not, it has learned to understand the underlying anatomical
representations.

Based on the above assumption, we design a self-supervised learning frame-
work to extract cross-modal representations with ultrasound video-audio data.
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Fig. 2. Left: proposed training pair sampling scheme, where the hard-positive and hard-
negative are illustrated. Right: proposed framework for self-supervised video-speech
representation learning.

Specifically, we randomly sample positive and negative pairs from the original
video-speech data, where a positive pair indicates that the considered video and
speech are correlated, while a negative pair is uncorrelated. A deep model is
then trained to identify such positive/negative pairs accordingly, resembling a
classification problem. Unlike natural image video and its corresponding au-
dio where highly-dense correlations present (e.g., playing the violin, cooking),
the speech audio from a sonographer and the medical ultrasound video are
sparsely correlated and narratively presented, making the correlation identifi-
cation more challenging. To address this issue, we first propose to force the
model to learn harder by sampling hard-negative and hard-positive pairs (as
illustrated in Fig. 2 left), so as to learn a more strongly correlated represen-
tations. Suppose the ultrasound video and speech clips at time interval T are
VT and ST , the speech clip at a shifted time interval T ′ is ST ′ , (VT ,ST ) is
considered as a positive pair and (VT ,ST ′) a negative pair. Instead of sampling
T ′ from a different scan sequence or a diverse anatomy sub-sequence, we force
the learning process to be constrained by sampling T ′ from a nearby segment.
This does not have to be for a different anatomy as T , i.e., T ′ = T + δ where
δ < D is a short random timestep and D is the shift range. Furthermore, we
sample ultrasound video frames and speech clips to increase the generalisability:
{vt, st, st′ |v ∈ V, s ∈ S, t ∈ T , t′ ∈ T ′}. In terms of the positive pair, we also
make it harder by perturbing the alignment within T so that vt and st do not
have to be exactly at the same timestamp t. Additionally, we randomly sample a
group of positive/negative pairs within each interval to represent the whole clip.
Finally, the hard-positive and hard-negative pairs used for training are defined
as {(vik, sjk)|k ∈ [1,K]} and {(vik, st′k)|k ∈ [1,K]} respecctively, where i, j ∈ T
and K is the number of sampling groups. An illustration of the proposed pair
sampling scheme when K = 1 is shown in Fig. 2 (left).

With the above-mentioned sampling scheme, training pairs are fed into deep
networks to extract the corresponding features. Suppose the ultrasound video
and speech subnetworks as gv and gs, the extracted features are gv(vt) and
gs(η(st)) where η(·) is a speech pre-processing function that converts the 1D
signal to a 2D spectrogram (more details see Sec. 3.1). The video and speech
features are fused for the correlation decision with a fusion function f(vt, st) =
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gv(vt) ⊕ gs(η(st)) where ⊕ represents feature concatenation. The correlation
decision task is then modelled as a classification problem with the objective:

Lcls = − 1

N

∑N

n=1

∑C

i
cni log(f(vt, st)

n
i ), (1)

where N is the total number of samples while C = 2 for our binary classification
problem, c is the label indicating if the inputs are correlated or not.

2.2 Cross-modal Contrastive Learning

We observe that in the speech data, there exist medical-unrelated contents (e.g.,
random talk), which deteriorate correlation learning. To address this, we in-
troduce cross-modal contrastive learning, in addition to the afore-mentioned
classification objective. The key idea here is to encourage the representations of
video and speech from a (hard-)positive pair to be similar while repelling the
(hard-)negative pair, at a projected embedding space. Specifically, before the
feature fusion, gv(vt) and gs(η(st)) are further projected to a latent space by
function h(·), where the cross-modal contrastive objective is applied. Suppose
yv = h(gv(vt)), ys = h(gs(η(st))) are the projected embeddings, the cross-modal
contrastive objective is defined as:

Lcont = −log e
sim(yv,ys) − esim(yv,ys′ )∑N

k=1 1[k 6=v]esim(yv,yk)
, (2)

where 1 ∈ {0, 1} and ys′ = h(gs(η(st′))). Function sim(a, b) = a>b measures
the similarity between two vectors. An illustration of the additional cross-modal
contrastive learning is shown in Fig. 2 (right).

2.3 Affinity-Aware Self-paced Learning

The microphone used to record the speech is placed in an open environment
without any specific voice filtering, which means that all the sound is recorded
including background noise (e.g., air conditioner, button-click), in addition to
the main narrative content. Since our main focus is the speech with meaningful
descriptions, the noise inevitably affects representation learning. To this end, we
further propose a self-paced learning curriculum based on the affinity between
video and speech data. Specifically, we divide the multi-modal data into different
affinity levels and perform specific learning schemes accordingly. For simplicity,
here we choose two affinity levels, i.e., low-affinity and high-affinity, where low-
affinity refers to the speech audio mostly consisting of noise and the rest is called
high-affinity. The affinity is automatically detected according to an energy-based
voice activity detection algorithm [14].

The proposed representation learning approach is only performed on the
high-affinity fragments. In terms of the low-affinity data, instead of directly
discarding it, we propose to leverage the video data which provides visual clues
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for representation learning. As a result, we include an additional pretext task to
extract representations from the whole video data. Inspired by [10], we randomly
shuffle the frames in a video clip and train the model to predict the correct order.
The assumption here is that the model can correct the shuffled frame order only if
it understands the anatomical information within the video clip. Four frames are
used to construct a clip for this task and the forward and backward sequences are
considered to be the same (e.g., 0-1-2-3 v.s. 3-2-1-0). Therefore, this pretext task
is modelled as a 12-category classification problem with cross-entropy objective
Lord. To avoid model cheating, the fan-shape of the ultrasound images is cropped
out, keeping only the inner part.

2.4 Implementation and Training

The proposed model framework is illustrated in Fig. 2 (right). In terms of the
backbone network architecture, we choose the ResNeXt-50 [17] with Squeeze-
and-Excitation module [8] and dilated convolutions [18]. The video and speech
subnetworks share the same architecture but are optimised separately with a
joint objective function as defined in Eq. 3:

L = αLcls + βLcont + γLord, (3)

where α, β, γ are weighting parameters and are empirically determined to be
equal. The projection function h(·) is achieved by a multilayer perceptron (MLP)
with a hidden layer and non-linear activation. The models are trained with the
SGD optimizer with momentum set to 0.9 and weight decay as 5 × 10−4. The
learning rate is initialised to 10−3 and divided by 10 for every 20 epochs. The
whole model is trained for 80 epochs. Gradient clipping is applied and the batch
size is set to 32. The sampling group number K = 2 due to memory limitation
and the interval skip range D = 5. The whole framework is implemented using
PyTorch on an NVIDIA RTX 2080Ti.

3 Experiments and Analysis

3.1 Data and Experimental Settings

The data used in this work is from a routine clinical fetal ultrasound dataset 1

with the scanned video and corresponding real-time speech as well as eye-gaze
data from sonographers. In total, we have 81 scans with speech data. On average,
each video scan is about 55,000 frames with frame rate of 30 fps. Each video clip
T consists of 60 consecutive frames and we have 73,681 clips for model training.
When sampling a training pair within each video clip, we extract 0.6s of the cor-
responding speech data and resample it to 24kHz. The speech is then converted
to a 2D log-spectrogram representation of size 256 × 256, using a short-time
Fourier transform (STFT) with 256 frequency bands, 10ms window length and

1 UK Research Ethics Committee Reference 18/WS/0051.
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Table 1. Evaluation results on stan-
dard plane detection (mean±std.[%]). Best
performance is marked in bold. Note
the methods on the right side are fully-
supervised using external annotations.

Rand.Init. Video Ours ImageNet Init. SonoNet

Precision 70.4±2.3 71.9±2.0 72.7±1.8 74.6±1.8 82.3±1.3
Recall 64.9±1.6 71.7±3.5 73.3±2.4 71.2±1.9 87.3±1.1
F1-score 67.0±1.3 71.5±2.4 72.6±1.7 72.5±1.8 84.5±0.9
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l

Predicted labelPredicted label

Fig. 3. Confusion matrix on standard
plane detection. Left: Video. Right: Ours.
(Best viewed in digital form.)

5ms hop length. Two downstream tasks are included for the learned representa-
tion evaluation, where we use 135 scans with three-fold cross-validation (90/45
for train/test) and each scan is temporally down-sampled at a rate of 8.

3.2 Standard Plane Detection

To evaluate the learned representations, we first perform transfer learning on
the standard plane detection task by fine-tuning the pre-trained weights from
pretext tasks. We use 14 categories of heart three-vessel and trachea view (3VT),
heart four-chamber view (4CH), abdomen, femur, brain transventricular plane
(BrainTv.), kidneys, heart left ventricular outflow tract (LVOT), lips, profile,
heart right ventricular outflow tract (RVOT), brain transcerebellum plane (Brai-
nTc.), spine coronal plane (SpineCor.), spine sagittal plane (SpineSag.) and
background. Standard plane labels are obtained from the dataset mentioned
above. Initialisation from random weights, pre-trained weights only on video
data (by the aforementioned frame order prediction task), pre-trained weights
on ImageNet [13] and weights pre-trained with SonoNet [2] are included for
comparison. Quantitative results are presented in Table 1. We see that the pro-
posed self-supervised cross-modal representation approach performs better than
the other alternative solutions on average. It also reveals that by leveraging
the speech data with consideration of its correlation to the visual data, better
performance is achieved, indicating stronger representations are learned. Note
that our learned representation performs better than the ImageNet initialisa-
tion for most metrics, which also suggests that representation extracted from
natural images do not transfer very well to medical data. In addition, we show
the label confusion matrix in Fig. 3. It can be observed that our approach per-
forms well on each category except the fine-grained ones like 3VT, 4CH, LVOT
and RVOT (different views of fetal heart), which are challenging for sonogra-
phers too. When compared to the video-only representations (Fig. 3 left), we
can see that our approach improves on almost all the categories, especially the
abovementioned fine-grained ones. This is mainly due to the incorporation of
visual-speech correlation where the additional speech representation reduces the
ambiguity that exists in video data.
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Table 2. Quantitative evaluation on eye-gaze saliency
prediction. Best performance is marked in bold.

KL↓ NSS↑ AUC↑ CC↑ SIM↑

Rand.Init. 3.94±0.18 1.47±0.24 0.90±0.01 0.12±0.02 0.05±0.01
Video 3.57±0.10 1.86±0.12 0.91±0.01 0.15±0.01 0.08±0.01
Ours 3.05±0.04 2.68±0.05 0.95±0.00 0.22±0.00 0.11±0.00

ImageNet Init. 3.95±0.28 1.72±0.25 0.89±0.02 0.14±0.02 0.08±0.01
SonoNet 3.14±0.02 2.62±0.03 0.94±0.00 0.21±0.00 0.12±0.00

Ground Truth Rand.Init. Ours

Fig. 4. Qualitative performance
on eye-gaze saliency prediction.

3.3 Eye-Gaze Saliency Prediction

Since our dataset contains simultaneous eye-gaze tracking data from sonogra-
phers, in addition to the standard plane detection task as in Sec. 3.2, we further
evaluate the effectiveness of the learned representations on a regression-based
task, namely eye-gaze saliency prediction. Similarly, we load the pre-trained
weights and fine-tune on the downstream task. A similar network architecture
is used, with only the last layers modified to predict a 2D saliency map. Fol-
lowing [3], we use the KL divergence (KL), normalised scanpath saliency (NSS),
area under curve (AUC), correlation coefficient (CC) and similarity (SIM) as the
evaluation metrics. Quantitative and qualitative results are shown in Table 2 and
Fig. 4 respectively, from which we can see that our approach again outperforms
the alternative solutions, and even better than the approaches (ImageNet Init.
and SonoNet) that were pre-trained with manual annotations.

3.4 Ablation Study

To better understand the effectiveness of the proposed learning strategies, we
present an ablation study with corresponding performance shown in Table 3.
We take the video-speech learning approach without cross-model contrastive
learning (CM.Contra.) and affinity-aware self-paced learning as baseline. We can
see from Table 3 that when including the cross-modal contrastive learning, the
performance is improved by a large margin. Adding the affinity-aware learning
scheme (Ours), further improves the model.

Table 3. Ablation study on each of the proposed strategies for two downstream tasks.

Prec.[%]↑ Rec.[%]↑ F1[%]↑ KL↓ NSS↑ AUC↑ CC↑ SIM↑

Baseline 70.7±3.6 70.2±2.4 69.8±2.9 3.96±0.69 1.76±0.42 0.90±0.03 0.15±0.03 0.08±0.01
+ CM.Contra. 71.8±2.3 71.1±2.3 70.9±1.9 3.43±0.01 2.23±0.02 0.93±0.00 0.19±0.00 0.08±0.00
Ours 72.7±1.8 73.3±2.4 72.6±1.7 3.05±0.04 2.68±0.05 0.95±0.00 0.22±0.00 0.11±0.00
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4 Conclusion

In this paper, we propose a self-supervised representation learning framework for
ultrasound video-speech multi-modal data. To the best of our knowledge, this
is the first attempt towards cross-modal representation learning without human
annotations for ultrasound data. We designed a simple, yet effective, approach
by modelling the affinity between these two modalities. To address the inherent
sparse correlation and noise issues in the speech data, we propose a cross-modal
contrastive learning scheme and an affinity-aware self-paced learning scheme.
Experimental evaluation on two downstream tasks shows that the learned repre-
sentations can transfer to fetal ultrasound standard plane detection and eye-gaze
saliency prediction and improve the average performance accordingly. The pro-
posed approach shows the potential to mitigate the need for laborious manual
annotation work in deep learning-based applications for medical imaging via
automated cross-modal self-supervision. Since the proposed approach is trained
and evaluated on video data with narrative speech audio and is not specifically
tailored for ultrasound, it could apply to other unseen video-audio data.
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