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ABSTRACT

This paper tackles the challenging problem of real-world data
self-supervised representation learning from two modalities:
fetal ultrasound (US) video and the corresponding speech
acquired when a sonographer performs a pregnancy scan. We
propose to transfer knowledge between the different modali-
ties, even though the sonographer’s speech and the US video
may not be semantically correlated. We design a network
architecture capable of learning useful representations such
as of anatomical features and structures while recognising
the correlation between an US video scan and the sonog-
rapher’s speech. We introduce dual representation learning
from US video and audio, which consists of two concepts:
Multi-Modal Contrastive Learning and Multi-Modal Similar-
ity Learning, in a latent feature space. Experiments show that
the proposed architecture learns powerful representations and
transfers well for two downstream tasks. Furthermore, we
experiment with two different datasets for pretraining which
differ in size and length of video clips (as well as sonographer
speech) to show that the quality of the sonographer’s speech
plays an important role in the final performance.

Index Terms— Ultrasound, Multi-Modal, Self-Supervised

1. INTRODUCTION

Fetal US is an essential part of pregnancy care to ensure ma-
ternal and fetal well being. The main purposes of the scan are
to ensure pregnancy viability and assess the risk for chromo-
somal anomalies. Scans are carried out by a sonographer who
controls the US probe to achieve a series of standard imaging
planes. This process requires a high level of skill and is not
available worldwide. Automated guidance in scanning may
contribute to changing current practice, help a non-expert to
detect abnormality and make US accessible worldwide.

CNNs were widely used in medical image analysis. How-
ever, most of the existing approaches rely on supervised learn-
ing when large-scale annotated datasets can be used for train-
ing. The annotation process needs extensive effort, is time-
intensive, tedious and requires expertise, which limits the use
of these models. In the meantime, learning useful and rele-
vant representations from a large amount of unlabeled image

data is an important step in medical image analysis.

Various methods have been proposed to learn represen-
tations from unlabeled data called “self-supervised learning
(SSL)”. It has shown great success in learning image-level
features from large-scale unlabeled data without using any
human-annotated labels. In SSL setting, a model (encoder) is
pretrained on unlabeled data according to a specific task and
then the trained encoder can be fine-tuned for training a super-
vised downstream task to evaluate the learned representations.
These downstream tasks for images include classification [1],
segmentation [2], and colourisation [3]. Recent methods have
investigated learning from audio and video modalities [4, 5].
In this case, audio and video are assumed to be in dense cor-
respondence. While they have considered cross-modal repre-
sentation learning, they assume that there is a (strong) correla-
tion between modalities. Nevertheless, in fetal US, the video
and the sonographer speech may not always be semantically
correlated (conversation about weather, and food).

In this paper, we tackle a challenging multi-modal rep-
resentation learning problem using a SSL approach for US
scans with corresponding sonographer speech without re-
lying on annotations. Developing networks that can learn
representations from unlabeled US raw data is difficult be-
cause the model must bridge the semantic gap between the
different datatypes and deal with incompatible network ar-
chitectures for each datatype. To address these challenges,
we propose dual representation learning from fetal US videos
and speech audios. Our approach consists of two main con-
cepts: 1) Multi-Modal Contrastive Learning (MMCL), and
2) Multi-Modal Similarity Learning (MMSL) in a latent fea-
ture space. Learning anatomical features in an unsupervised
manner while bridging the gap between different datatypes
is the main goal of our approach. Within our framework, we
consider three datatypes: video, speech, and image. In the
dataset, we sample videos, corresponding speech, and an im-
age randomly sampled from the video. Fig. 1 illustrates this
setting. Our hypothesis is that including sonographer speech
to the scans can contribute to better representation learning.
Therefore, we collected two datasets for pretraining: the
first is large but with short clips (2s), while the second is a
medium-sized dataset but with longer clips (6s).



Fig. 1: The three datatypes used in our approach.

2. METHODOLOGY

In this work, we validate our hypothesis that useful represen-
tations can be learned from audio and video with the help of
images to align the sonographer’s speech with the US video
scan. Fig. 2 illustrates the main idea of our proposed method.

2.1. Encoding Networks
Given a dataset D = {Vi, Ai}ni=1 where there are N videos
(Vi) each with audio (Ai). For image (Iij), we randomly
sample it from video Vi. Then, we extract the unimodal em-
beddings for each datatype using CNNs.
Image Encoder. To extract anatomical features from an
US image, we use a 2D-CNN architecture. Given a video
Vi, we randomly sample an image Iij from it, then we
use the 2D-CNN to extract the image features as follows:
Fi = W2D−CNN (Iij), where Fi is Di-dimensional feature
vector (image embedding).
Audio Encoder. Given an audio Ai corresponding to a video
Vi, we extract the log-mel spectrogram and feed it to a pre-
trained 1D-CNN to get the audio features as follows: Fa =
W1D−CNN (Ai), where Fa is Da-dimensional feature vector
(audio embedding) and WD−CNN are parameters.
Video Encoder. We use a 3D CNN to extract video represen-
tations. The feature extractor has a stack of residual blocks
with (2 + 1)D convolutions. Given a video Vi represented
as a volume of D×H×W×T, features are extracted as follows:
Fv = W3D−CNN (Vi).

2.2. Multi-Modal Contrastive Learning (MMCL)

We hypothesize that two modalities, either the pair video-
audio or video-image, share similar anatomical structures at
the same timestamp, which will help to learn a cross-modal
representation. Therefore, the model aims to successfully rec-
ognize whether a sonographer speech and an US video are
correlated. The same idea can be applied to the pair of image
and video scan. To reduce the possible semantic gap between
datatypes, we propose to correct the speech audio and image
embeddings by applying an efficient fusion method between
the two pairs namely video-audio and video-image embed-
dings to reduce the semantic gap in the latent feature space.
Given the video, speech audio and image embeddings repre-
sented as Fv , Fa, and Fi respectively, we fuse the two pairs

Fig. 2: Our proposed pretraining approach.

using the following equations:

Uva(Fv, Fa) = Fva = Fa + Vθva
(Fv, Fa) (1)

Uvi(Fv, Fi) = Fvi = Fi + Vθvi(Fv, Fi). (2)

To obtain the function Vθ(., .), we apply two main oper-
ations on the embeddings: concatenation and linear projec-
tion. Then, we apply contrastive learning in the latent feature
space to enforce the positive pairs to be close and the negative
pairs to be far apart. The positive pairs are images, videos,
and speech audios from the same timestamp (as illustrated in
Fig. 1). Therefore, the contrastive loss between the audio and
video scan is defined as follows:

LCL(Vk, A) = − log
exp(ψ(F (k)
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Also we can construct a contrastive loss between the video
embeddings and video-audio embedding as follows:
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Similarly, we apply the same idea to image and video:
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The final contrastive losses between video/audio and
video/image pairs are defined as follows:

La = πLCL(Fv, Fa) + (1− π)LCL(Fv, Fva) (7)

Li = πLCL(Fv, Fi) + (1− π)LCL(Fv, Fvi), (8)

where π balances the two terms. Thus, the losses La and Li
are considered as similarity constraints to make the embed-
dings close together in the multi-modal latent feature space.



2.3. Multi-Modal Similarity Learning (MMSL)

As with the MMCL idea, we use the sonographer speech au-
dio and the image as a summary of the video to understand
the anatomical structures found in US video scans. Given
the video feature vector Fv , the image feature vector Fi, and
the audio feature vector Fa, we proceed to a projection in
the latent feature space using affine transformations in the
form of a fully connected (FC) layer. Batch normalization
(BN) is used after the FC layer to ease training using: (1)
µ(v) = BN(θvFv + bv), (2) µ(a) = BN(θaFa + ba), and
(3) µ(i) = BN(θiFi + bi), where θv , θa, and θi are param-
eters of each FC layer, while bv , ba, and bi are biases. We
use video-audio and video-image similarities to learn cross-
modal representations between pairs of datatypes as follows:

fsim(v, a) =
µ(v).µ(a))

∥µ(v)∥.∥µ(a)∥
(9)

fsim(v, i) =
µ(v).µ(i))

∥µ(v)∥.∥µ(i)∥
, (10)

where fsim(v, a) is the similarity between video and audio
while fsim(v, i) is the similarity between video and image.
fsim is the cosine similarity where its goal is to make the
audio closer to the video when the sonographer speech is rel-
evant to the scan, while pushing them far apart when they are
irrelevant in the latent feature space. The same idea is applied
to the video-image pair. Given a mini-batch of video-audio
pairs, we use the improved triplet ranking loss [6], which
penalizes the model according to the hardest negative sam-
ples. Consequently, given a video-audio pair (v, a) and video-
image pair (v, i), we compute the losses as follows:

LMMSL(v, a) = max(0, α+ fsim(v, a−)−
+max(0, α+ fsim(v−, a)− fsim(v, a))

(11)

LMMSL(v, i) = max(0, α+ fsim(v, i−)−
fsim(v, i)) + max(0, α+ fsim(v−, i)− fsim(v, i)),

(12)

where α is the margin constant, while a− and v− respectively
indicate a negative audio sample for the video v and a negative
video sample for a. The same thing for i− and v− when we
compute the similarity between video and image.

3. EXPERIMENTS AND ANALYSIS

Experimental Settings. In terms of backbone networks, we
use the 2D−ResNet18 for image, 1D−CNN14 for audio,
and R(2+1)D− 18 for video. Since these networks’ dimen-
sions differ, we use linear projections to map the embeddings
to the same dimension. The dimension of the latent feature
space is 512. We use an Adam optimizer with the default ini-
tial learning rate of 3.10−3 and weight decay of 10−4. The
temperature τ is set to 0.1 and π is set to 0.5. The video clips
are cropped to 128×128, where each clip contains 14 frames.

Table 1: Performance of our approach on SP detection.

Models Precision Recall F1-score

ImageNet Init. 74.6 (1.8) 71.2 (1.9) 72.5 (1.8)

Rand. Init. 69.5 (1.9) 65.6 (1.5) 67.49 (1.1)
Ours (Large) 70.1 (1.2) 66.4 (1.4) 68.19 (1.2)
Ours (Medium) 73.9 (1.3) 74.8 (1.4) 74.34 (1.1)

Models are trained using PyTorch and are optimized with the
following final objective function:

Lfinal = La + Li + LMMSL(v, a) + LMMSL(v, i) (13)

Pretraining Dataset. The data used to pretrain our approach
is from routine clinical fetal US exams with real-time sonog-
rapher gaze tracking data from the PULSE study1. We select
81 scans with speech data. On average, each video scan is
about 55,000 frames with frame rate of 30 fps. To pretrain our
approach, we collect two datasets: (1) a dataset with 44,173
videos with 2s each, and (2) a dataset with 10,457 video scans
where the length of each is 6s.
Fine-Tuning Datasets. We fine-tuned our proposed method
using two downstream tasks namely saliency prediction and
standard plane detection, where we used a dataset of 135
scans with five-fold cross-validation (90/45 for train/test). In
standard plane detection, we have 14 categories: heart three-
vessel and trachea view, heart four-chamber view, abdomen,
femur, brain transventricular plane, kidneys, heart left ven-
tricular outflow tract, lips, profile, heart right ventricular out-
flow tract, brain transcerebellum plane, spine coronal plane,
spine sagittal plane and background. For saliency prediction,
we use the same dataset because it contains simultaneous
eye-gaze tracking data from sonographers.

3.1. Standard Plane Detection
In this first experiment, we investigate two questions: (1)
do the learned features improve the performance of standard
plane detection, even in the situation of small datasets?; and
(2) does the pretraining dataset size and the quality of speech
audio play an important role in the final results? We compare
the performance of our approach on two unlabeled datasets,
which differ in the size, length, and the quality of sonogra-
pher speech. Also, we compare our approach with random
weights, and pretrained weights on ImageNet, which is fully
supervised. The quantitative results are shown in Table 1. It
is clear that our proposed approach performs better than the
other methods. More importantly, we notice that the model
trained on the medium-sized dataset but with video scans of
6s performs better than the one trained on a larger dataset but
with shorter video scans (2s). Moreover, we see that by lever-
aging the speech data, we improve the performance, showing
that stronger representations are learned.

1This study was approved by the UK Research Ethics Committee (Refer-
ence 18/WS/0051) and the ERC ethics committee.



Table 2: Performance on saliency prediction.
Model KLD ↓ SIM ↑ NSS ↑ CC ↑
ImageNet 3.95 (0.28) 0.08 (0.01) 1.72 (0.25) 0.14 (0.02)

Rand. Init. 4.02 (0.11) 0.07 (0.09) 1.76 (0.10) 0.13 (0.09)
Ours (Large) 3.96 (0.10) 0.09 (0.12) 1.77 (0.12) 0.14 (0.09)
Ours (Medium) 3.02 (0.06) 0.13 (0.05) 2.72 (0.04) 0.25 (0.05)

(a) US (b) GT (c) RI (d) Ours

Fig. 3: Qualitative performance on saliency prediction.

3.2. Ultrasound Saliency Prediction

As in standard plane detection, we use the pretrained weights
and finetune on the current task. We modify the last lay-
ers of the network to predict the saliency map. We use
Kullback-Leibler divergence (KL), Normalised Scanpath
Saliency (NSS), Correlation Coefficient (CC) and Similarity
(SIM) as the evaluation metrics [7]. Results are shown in
Table 2. Our proposed approach outperforms the other al-
ternative methods including ImageNet initialization, which
was pre-trained with manual annotations. We notice that
the model performs better when trained on the medium-sized
dataset (video scans with 6s) rather than large dataset but with
short video scans. Furthermore, we show qualitative results
in Fig. 3 where we compare with random initialization (RI).

3.3. Ablation Study
We perform an ablation study to quantify the performance
of each module and the image datatype. We select stan-
dard plane detection and the medium unlabeled dataset as
our evaluation task. Table 3 shows the results with only the
MMCL and the MMSL strategies and the contribution of
the image. We can see that MMCL better contributes to the
overall performance compared to MMSL. Combining the two
approaches further improves the results. We notice that using
the image datatype slightly boosts the performance (referred
to as w/o image in Table 3).

4. DISCUSSION AND CONCLUSION

We present a novel dual representation learning approach
from US video and sonographer speech. We show that audio
plays an important role in learning strong representations. To
validate our assumption that including sonographer speech
with the visual data (video scans), we can learn strong repre-

Table 3: Ablation study of the proposed approach.

Models Precision. Recall F1-score

MMSL 69.8 (1.2) 71.5 (1.4) 70.63 (1.3)
MMCL 71.1 (1.3) 72.4 (1.2) 71.74 (1.2)

W/o image 73.1 (1.3) 74.3 (1.2) 73.69 (1.1)
Ours (Medium) 73.9 (1.3) 74.8 (1.4) 74.34 (1.1)

sentations and improve performance, we designed and tested
models using two different datasets. For the first models we
used a large dataset of short video clips (2s) that contain some
redundancies such as video clips with sometimes no sonogra-
pher speech. The second model used a medium-sized dataset
of longer video clips (6s). These video clips can contain
complete commentary about the video clip. The experimental
results confirm our hypothesis that we get improved perfor-
mance when we train the models on the second dataset and
fine-tune them on two challenging downstream tasks. Fur-
thermore, we show that image datatype can help to improve
the performance, especially when the sonographer speech is
not correlated with the video scan, and validate our intuition
that an image can summarize the whole video scan.
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