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ABSTRACT

Recent advances in deep learning have achieved promising
performance for medical image analysis, while in most cases
ground-truth annotations from human experts are necessary
to train the deep model. In practice, such annotations are ex-
pensive to collect and can be scarce for medical imaging ap-
plications. Therefore, there is significant interest in learning
representations from unlabelled raw data. In this paper, we
propose a self-supervised learning approach to learn mean-
ingful and transferable representations from medical imaging
video without any type of human annotation. We assume that
in order to learn such a representation, the model should iden-
tify anatomical structures from the unlabelled data. Therefore
we force the model to address anatomy-aware tasks with free
supervision from the data itself. Specifically, the model is de-
signed to correct the order of a reshuffled video clip and at
the same time predict the geometric transformation applied to
the video clip. Experiments on fetal ultrasound video show
that the proposed approach can effectively learn meaningful
and strong representations, which transfer well to downstream
tasks like standard plane detection and saliency prediction.

Index Terms— Self-supervised, representation learning,
ultrasound video

1. INTRODUCTION

Machine learning, especially deep learning techniques, have
witnessed great success in medical image analysis in recent
years. Several learning-based approaches have demonstrated
superior performance over human experts [1, 2]. Most of
these methods extensively rely on ground-truth labeled data
annotated by human experts, to train the deep model. How-
ever, data annotation is expensive to scale, and in addition, the
“ground-truth” label of medical images might be inaccessible.
Therefore, in this paper, we are interested in the question: Is
it possible to learn meaningful representations directly from
raw data, without any human annotations?

Here we explore this question through self-supervised
representation learning, in which “self-supervised” indicates
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that the learning process is supervised purely based on the
data itself (also termed unsupervised in some literature).
In our work, we define representation learning as captur-
ing anatomy-aware knowledge, which plays a crucial role
in medical image interpretation. Specifically, we showcase
the effectiveness of the proposed representation learning ap-
proach with application to automated fetal ultrasound (US)
scan interpretation.

Visual representation learning has been recently explored
for natural images. For instance, Zhang et al. [3] propose to
learn representations by colourising a grayscale image to its
color version equivalent. However, such a colourisation strat-
egy does not apply to US images (and other medical images)
due to its monotone nature and absence of true colour. Wang
and Gupta [4] learn visual representations from video data
by using off-the-shelf tracking algorithms. Whereas its learn-
ing ability is restricted by the performance of the used tracker
and visual tracking in US is a difficult task itself. On the
other hand, for US and even medical images in general, self-
supervised representation learning is under-explored. Given
that medical annotation is expensive and infeasible in many
cases, it is crucial to learn representations from medical im-
ages without annotation.

In the field of fetal US image analysis, recent works on
standard plane detection and visual saliency prediction show
promising performance with deep learning. Baumgartner et
al. [5] proposed a convolutional neural network (CNN) to de-
tect 2D fetal standard views. Cai et al. [6] augment the stan-
dard plane detection with a visual saliency prediction task and
show that it helps the detection task. Inspired by the saliency
prediction task, a recent work [7] shows that transferable rep-
resentations can be learned by modelling sonographer visual
attention. To our knowledge, this is the only US representa-
tion learning method in the literature. However, it fully relies
on gaze-tracking data as a ground-truth label for supervision,
limiting its generalisability as an approach.

Different from the abovementioned prior works, in this
paper we propose a new self-supervised representation learn-
ing approach tailored for characteristics of fetal US video.
Specifically, based on the assumption that distinctive strong
representations should be anatomy-aware for US data, we
design a joint reasoning task to force the model to identify
anatomical structures during the self-supervised learning pro-



cess: correct the reshuffled video frames and identify the
specific transformation applied to the video clip simultane-
ously. To the best of our knowledge, this is the first attempt
to learn representations from US video without any type of
external annotation. The learned representations are evalu-
ated on two US tasks – standard plane detection and saliency
prediction. The weights learned by the proposed approach
are fine-tuned on the above two tasks with limited training
samples, to demonstrate the transferability of our method.
Extensive experimental results show that the proposed self-
supervised learning approach is able to capture meaningful
and strong representations that transfer well to downstream
tasks, with a small margin towards the performance of super-
vised methods.

The main contributions of our work are: 1) We present,
to our knowledge, the first attempt towards self-supervised
representation learning for fetal US video, without any exter-
nal annotations; 2) We propose a joint reasoning approach to
implicitly force the model to learn anatomy-aware represen-
tations; 3) Even with only the raw data itself, our approach
is demonstrated to be effective in learning transferable repre-
sentations, by evaluations on various downstream tasks.

2. METHODS

In this section, we describe the proposed self-supervised rep-
resentation learning approach in detail. The main idea is that
if the learned representation is strong and with good transfer-
ability, the corresponding deep model should be capable of
identifying the anatomical structures in the data. In this pa-
per, we demonstrate the idea with fetal US video data. The
specially designed tasks are described as follows.

2.1. Temporal Order Correction

Suppose xi ∈ X ⊂ RH×W×K is a video frame in the video
data set X , where H,W and K represent the height, width
and number of frames in a video clip {x1, x2, ..., xK}. Here
we first explore representation learning by designing the task
of temporal order correction. We argue that if a model can
correct a randomly shuffled video clip, it should be aware of
the underlying anatomical representations. A video clip is
pre-processed by reshuffling the frame order and taken as in-
put to a CNN model fθ. The model is trained to correct the
random order and reconstruct the original video clip. An ex-
ample is illustrated in Fig. 1. Taking K = 4 as an example,
the index of the reshuffled video clip {1,3,0,2} (or {2,0,3,1})
is corrected by the model to {0,1,2,3}. To capture high-level
context information, here we model the order correction task
as a classification problem. Specifically, the model takes a
reshuffled video clip as input and predict the correct order in-
dex of this clip. For K = 4 the correction space is with size
of 4P4/2 = 12, i.e., a 12-way classification problem.
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Fig. 1. Illustration of the temporal order correction. Ran-
domly shuffled video frames are fed into the CNN model fθ
to correct the frame order.
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Fig. 2. Illustration of the spatio-temporal transform predic-
tion. The model gθ is learned to predict the transformation τ
applied to the video clip.

2.2. Spatio-temporal Transform Prediction

In addition to the temporal representation, we also take spatial
information into consideration. Here the spatial representa-
tion is learned through a task of predicting the parameters of
the affine transformation (i.e., translation, scale, rotation, and
shear) that is applied to a video clip. We design this task based
on the assumption that the model should identify distinctive
structures in order to correctly predict the specific transfor-
mation. Given a video clip v = {x1, x2, ..., xK} and a spatio-
temporal transformation τ ∈ T where T is a transformation
set, the video clip is transformed by τ(v) and sent to a CNN
model gθ together with the original clip v. Then the model is
trained to predict the applied transformation τ . Although var-
ious transformations can be included into set T , for simplicity
we use the affine transform in this paper. An example is illus-
trated in Fig. 2. Affine transformations of scale, rotate, shear,
etc. are applied to the original video clip. Based on sufficient
training data and random transformations, the model gθ learns
to predict the transformation parameters accordingly.

2.3. Joint Anatomy-Aware Reasoning

Based on the abovementioned tasks, we propose a joint rea-
soning approach that leverages the learning ability from both
order correction and geometric transformation prediction for
anatomy-aware representation learning. Here we explore two
strategies to combine these tasks: a partially Siamese net-
work, or disentangling a joint objective. Specifically, the first
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Fig. 3. The proposed joint reasoning frameworks. Left to
right: partially Siamese network; objective disentangle net-
work; More details [8] for the network components.

strategy is performing the two tasks in parallel while using a
Siamese network that partially shares weights; the latter solu-
tion is to apply both the frame reshuffling and transformation
onto the same video clip, and let a single model predict and
disentangle these two features. The network architectures of
these solutions are shown in Fig. 3. To train the joint reason-
ing networks, we define the objective function as follows:

L = Lord + Ltrans, (1)

where Lord is a cross-entropy loss for the index classification
and Ltrans = ‖τ̂ − τ‖ is for the transformation parameter
prediction. Note that all the above supervisions are free to
use, without any external annotations.

2.4. Network Implementation

We use the SENet [8] as our backbone network, though other
CNNs can also be easily applied. Following prior works [7],
the normal convolutions are replaced with dilated convolu-
tions, as illustrated in Fig. 3 (right). The models were trained
with SGD optimizer with momentum of 0.9 and weight decay
of 10−4. Learning rate was set as 0.1 and the models were
trained for 8 epochs. Batch size is set as 32 and data aug-
mentation was performed including random crop, horizontal
flipping, and gamma and brightness variation. The models
were implemented in PyTorch on an NVIDIA Titan V GPU.

3. EXPERIMENTS AND RESULTS

In our experiment, we used a routine clinical fetal US dataset1

with both video sequences and corresponding real-time gaze-
tracking data from sonographers. The average video duration
for each scan is about 82,000 frames. In our experiments, 135
scans are used with three-fold cross-validation by equally-
divided subsets (90 training and 45 testing). By discarding
invalid data and temporally down-sampling at a rate of eight,
we acquired 400,000 frames in total. The fan-shape was re-
moved by centre-cropping to avoid trivial solution for our de-
signed tasks and each video clip consists of four frames.

1UK Research Ethics Committee Reference 18/WS/0051.

Table 1. Evaluation results on standard plane detection
(mean±std.[%]). Best performance is marked in bold. Note
the last three methods use external labels/supervision.

Rand.Init. Ours-Siam. Ours-Dise. Gaze Saliency SonoNet

Precision 70.4±2.3 75.8±1.9 71.1±3.1 67.2±3.4 79.5±1.7 82.3±1.3
Recall 64.9±1.6 76.4±2.7 71.9±1.4 57.3±4.5 75.1±3.4 87.3±1.1
F1-score 67.0±1.3 75.7±2.0 71.0±2.3 60.7±3.9 76.6±2.6 84.5±0.9
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Fig. 4. Confusion matrix of the precision on standard plane
detection for Ours-Siam. (left) and Ours-Dise. (right).

3.1. Evaluation on Standard Plane Detection

We first evaluate the effectiveness of our learned representa-
tions by transferring to the standard plane detection task. Sim-
ilar to [5, 7], we consider 14 categories: three-vessel and tra-
chea view (3VT), four-chamber view (4CH), left ventricular
outflow tract (LVOT), right ventricular outflow tract (RVOT),
profile, abdominal, brain cerebellum plane (BrainCb.), brain
transventricular plane (BrainTv.), femur, kidneys, lips, spine
coronal plane (SpineCor.), spine sagittal plane (SpineSag.)
and background. The learned weights from our models are
loaded to a new model (same architecture except for the fi-
nal classification layers) to fine-tune standard plane detec-
tion. Baseline methods of random initialisation, initialisa-
tion from gaze/saliency prediction [7] and SonoNet [5] were
included for a comparison. The training settings were kept
the same as [7] for fair comparison. Evaluation results are
shown in Table 1. From the results we can observe that our
approaches perform consistently better than the random ini-
tialisation and even better than the gaze-prediction method
which leverages gaze as external supervision. Our Siamese
approach is slightly better than the disentangle one, which
suggests that earlier isolation is more suitable for joint rea-
soning. Moreover, our Siamese approach is more stable with
a substantially lower standard deviation. To better understand
the contribution of each category, we present the confusion
matrix for the precision of our two solutions in Fig. 4. We
can see that for most cases our two approaches can correctly
detect the standard plane, while performing relatively worse
on the cardiac views (3VT, 4CH, LVOT, RVOT). We attribute
this to the confusing representations among these categories,
as even human experts are poor at distinguishing them.



Table 2. Evaluation results on visual saliency prediction.
Best performance is marked in bold.

KL↓ NSS↑ AUC↑ CC↑ SIM↑
Rand.Init. 3.94±0.18 1.47±0.24 0.90±0.01 0.12±0.02 0.05±0.01
Ours-Siam. 3.00±0.08 2.72±0.12 0.95±0.00 0.22±0.01 0.12±0.01
Ours-Dise. 3.06±0.08 2.54±0.11 0.94±0.00 0.21±0.01 0.11±0.01

SonoNet 3.14±0.02 2.62±0.03 0.94±0.00 0.21±0.00 0.12±0.00

Input Ground Truth Rand.Init. Ours-Siam. Ours-Dise. SonoNet

Fig. 5. Qualitative performance for visual saliency prediction
with comparison to alternative solutions and ground-truths.

3.2. Evaluation on Saliency Prediction

In addition to the classification-based task explored in Sec. 3.1,
we evaluate the learned representation by a regression-based
task, i.e., visual saliency prediction. Similar to the evaluation
on standard plane detection, we loaded the network weights
that were learned by our approach to a saliency prediction
model and fine-tune it. We use a similar network structure
with the final layers dilated to keep a spatial map for the
regression task. Since the representation learning methods
proposed in [7] take gaze/saliency prediction as their training
task, it is improper to include for comparison. Instead, we
compared with the random initialisation and initialise from
the SonoNet weights. The comparison result is shown in
Table 2, with evaluation metrics that are commonly used in
saliency prediction works [9, 7]: Kullback-Leibler divergence
(KL), normalised scanpath saliency (NSS), area under ROC
curve (AUC), Pearson’s correlation coefficient (CC) and sim-
ilarity (SIM). The evaluation results in Table 2 again validate
the effectiveness of the proposed approach. Note that for this
dense prediction task, the model with Ours-Siam. weights
performs even better than that from SonoNet for some met-
rics. Example qualitative performance is also presented for
comparison in Fig. 5, where consistent performance is shown
with the quantitative results.

3.3. Ablation Study

For a better understanding of the contribution from each sub-
task (temporal order correction and spatio-temporal transform
prediction), we performed an ablation study and report the re-
sults in Table 3. It can be observed that either the order correc-
tion task or the transform prediction task performs quite well
alone. When jointly reasoning these two tasks in a Siamese
model, the performance is further boosted.

Table 3. Ablation study on the tasks of both standard plane
detection and visual saliency prediction.

Prec.[%] Rec.[%] F1[%] KL↓ NSS↑ AUC↑ CC↑ SIM↑
Ord.Crct. 72.1±4.2 72.5±2.1 71.8±3.0 3.29±0.14 2.29±0.16 0.93±0.01 0.19±0.01 0.09±0.01
Trans.Pred. 72.8±3.5 72.3±1.7 72.3±2.6 3.54±0.61 1.97±0.74 0.93±0.02 0.16±0.06 0.09±0.02
Ours (final) 75.8±1.9 76.4±2.7 75.7±2.0 3.00±0.08 2.72±0.12 0.95±0.00 0.22±0.01 0.12±0.01

4. DISCUSSION AND CONCLUSION

In this paper, for the first time, we addressed the self-
supervised representation learning problem for fetal ultra-
sound video. Transferable representations were learned with-
out any type of external labels. We assume meaningful and
strong representations rely on the identification of anatomical
information from the raw data, and proposed a joint reason-
ing framework to achieve that accordingly. Extensive exper-
iments on two US-related tasks show that the representations
learned by our approach are meaningful and transferable,
outperforming other alternative solutions. Although in this
work we showcase the self-supervised learning capability of
the proposed approach on US, our framework is generic and
has potential to be applied in other medical modalities, which
we believe to be a promising direction for future work.
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