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Abstract. Visual saliency modeling for images and videos is treated as
two independent tasks in recent computer vision literature. While image
saliency modeling is a well-studied problem and progress on benchmarks
like SALICON and MIT300 is slowing, video saliency models have shown
rapid gains on the recent DHF1K benchmark. Here, we take a step back
and ask: Can image and video saliency modeling be approached via a
unified model, with mutual benefit? We identify different sources of do-
main shift between image and video saliency data and between different
video saliency datasets as a key challenge for effective joint modelling.
To address this we propose four novel domain adaptation techniques—
Domain-Adaptive Priors, Domain-Adaptive Fusion, Domain-Adaptive
Smoothing and Bypass-RNN— in addition to an improved formula-
tion of learned Gaussian priors. We integrate these techniques into a
simple and lightweight encoder-RNN-decoder-style network, UNISAL,
and train it jointly with image and video saliency data. We evaluate
our method on the video saliency datasets DHF1K, Hollywood-2 and
UCF-Sports, and the image saliency datasets SALICON and MIT300.
With one set of parameters, UNISAL achieves state-of-the-art perfor-
mance on all video saliency datasets and is on par with the state-of-
the-art for image saliency datasets, despite faster runtime and a 5 to
20-fold smaller model size compared to all competing deep methods.
We provide retrospective analyses and ablation studies which confirm
the importance of the domain shift modeling. The code is available at
https://github.com/rdroste/unisal.

Keywords: Visual saliency · Video saliency· Domain adaptation.

1 Introduction

When processing static scenes (images) and dynamic scenes (videos), humans
direct their visual attention towards important information, which can be mea-
sured by recording eye fixations. The task of predicting the fixation distribution
is referred to as (visual) saliency prediction/modeling, and the predicted distri-
butions as saliency maps. Convolutional neural networks (CNNs) have emerged
as the most performant technique for saliency modeling due to their capacity to
learn complex feature hierarchies from large-scale datasets [2,20].
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Fig. 1. Comparison of the proposed model with current state-of-the-art methods on
the DHF1K benchmark [47]. The proposed model is more accurate (as measured by
the official ranking metric AUC-J [5]) despite a model size reduction of 81% or more.

While most prior work focuses on image data, interest in video saliency mod-
eling was recently accelerated through ACLNet, a dynamic saliency model that
outperforms static models on the large-scale, diverse DHF1K benchmark [47].
However, as methods for video saliency modeling progress, it is usually con-
sidered a separate task to image saliency prediction [1,48,19,35,29,25] although
both strive to model human visual attention. Current dynamic models use im-
age data only for pre-training [1,19,35,29,25] or auxiliary loss functions [47]. In
addition, many dynamic models are incompatible with image inputs since they
require optical flow [1,25] or fixed-length video clips for spatio-temporal convo-
lutions [19,35]. In this paper, we ask the question: Is it possible to model static
and dynamic saliency via one unified framework, with mutual benefit?

First, we present experiments that identify the domain shift between im-
age and video saliency data and between different video saliency datasets as
a crucial hurdle for joint modelling. Consequently, we propose suitable domain
adaptation techniques for the identified sources of domain shift. To study the
benefit of the proposed techniques, we introduce the UNISAL neural network,
which is designed to model visual saliency on image and video data coequally
while aiming for simplicity and low computational complexity. The network is
simultaneously trained on three video datasets—DHF1K [47], Hollywood-2 and
UCF-Sports [34]—and one image saliency dataset, SALICON [20].

We evaluate our method on the four training datasets, among which DHF1K
and SALICON have held-out test sets. In addition, we evaluate on the established
MIT300 image saliency benchmark [21]. We find that our model significantly
outperforms current state-of-the-art methods on all video saliency datasets and
achieves competitive performance for the image saliency datasets, with a fraction
of the model size and faster runtime than competing models. The performance
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of UNISAL on the challenging DHF1K benchmark is shown in Figure 1. In
summary, our contributions are as follows:

– To the best of our knowledge, we make the first attempt to model image and
video visual saliency with one unified framework.

– We identify different sources of domain shift as the main challenge for joint
image and video saliency modeling and propose four novel domain adapta-
tion techniques to enable strong shared features: Domain-Adaptive Priors,
Domain-Adaptive Fusion, Domain-Adaptive Smoothing, and Bypass-RNN.

– Our method achieves state-of-the-art performance on all video saliency datasets
and is on par with the state-of-the-art for all image saliency datasets. At the
same time, the model achieves a 5 to 20-fold reduction in model size and
faster runtime compared to all existing deep saliency models.

2 Related Work

Image Saliency Modeling. Most visual saliency modeling literature aims to
predict human visual attention mechanisms on static scenes. Early saliency mod-
els [17,3,42,13,26,22] focus on low-level image features such as intensity/contrast,
color, edges, etc., and are are therefore referred to as bottom-up methods. Re-
cently, the field has achieved significant performance gains through deep neural
networks and their capacity to learn high-level, top-down features, starting with
Vig et al . [45] who propose the first neural network-based approach. Jiang et
al . [20] collect a large-scale saliency dataset, SALICON, to facilitate the explo-
ration of deep learning-based saliency modeling. Zheng et al . [51] investigate the
impact of high-level observer tasks on saliency modeling. Other papers mainly
focus on network architecture design with increasing model sizes. For instance,
Pan et al . [37] evaluate shallow and deep CNNs for saliency prediction, and
Kruthiventi et al . [23] introduce dilated convolutions and Gaussian priors into
the VGG network architecture. Kuemmerer et al . [24] propose a simplified VGG-
based network while Wang et al . [46] add skip connections to fuse multiple scales
and Cornia et al . [7] add an attentive convolutional LSTM and learned Gaus-
sian priors. Yang et al . [50] expand on the idea of dilated convolutions based on
the inception network architecture. While exploration is still ongoing for image
saliency modeling, dynamic scenes are arguably at least as relevant to human
visual experience, but have received less attention in the literature to date.

Video Saliency Modeling. Similar to image saliency models, early dynamic
models [33,32,39,15] predict video saliency based on low-level visual statistics,
with additional temporal features (e.g ., optical flow). Marat et al . [33] use video
frame pairs to compute a static and a dynamic saliency map, which are fused
for the final prediction. Marat et al . [33] and Zhong et al . [52] combine spa-
tial and temporal saliency features and fuse the predictions. By extending the
center-surround saliency in static scenes, Mahadevan et al . [32] use dynamic
textures to model video saliency. The performance of these early models is lim-
ited by the ability of the low-level features to represent temporal information.
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Consequently, deep learning based methods have been introduced for dynamic
saliency modeling in recent years. Gorji et al . [10] propose to incorporate at-
tentional push for video saliency prediction, via a multi-stream convolutional
long short-term memory network (ConvLSTM). Jiang et al . [19] show that hu-
man attention is attracted to moving objects and propose a saliency-structured
ConvLSTM to generate video saliency. A recent work [48] presents a new large-
scale video saliency dataset, DHF1K, and propose an attention mechanism with
ConvLSTM to achieve better performance than static deep models. The DHF1K
dataset, sparked advances [35,25,29] in video saliency prediction, exploring differ-
ent strategies to extract temporal features (optical flow, 3D convolutions, differ-
ent recurrences). However, the above methods either extend prior image saliency
models or focus on video data alone with limited applicability to static scenes.
Guo et al . [11] present a spatio-temporal model that predicts image and video
saliency through the phase spectrum of the Quaternion Fourier Transform but
the model lacks the necessary high-level information for accurate saliency pre-
diction. While a recent learning-based approach [30] extends the image domain
to the spatio-temporal domain by using LSTMs, such models are specialized for
video data, rendering them unable to simultaneously model image saliency.

Domain Adaptation. We focus on domain specific learning, a form of do-
main adaptation which enables a learning system to process data from different
domains by separating domain-invariant (shared) and domain-specific (private)
parameters [6]. Domain Separation Networks (DSN) [4], for instance, are au-
toencoders with additional private encoders. Instead of an autoencoder, Tsai et
al . [43] introduce an adversarial loss that enforces shared and private encoders
networks. Xiao et al . [49] propose Domain Guided Dropout that results in dif-
ferent sub-networks for each domain, and Rozantev et al . [38] train entirely
separate networks for each domain, coupled through a similarity loss. In con-
trast to using separate networks, the AdaBN method [28] adjusts the batch-
normalization (BN) parameters of a shared network based on samples from a
given target domain. The DSBN method [6] generalizes this idea by training a
separate set of BN parameters for each domain. In general, these existing meth-
ods result in a large proportion of domain-specific parameters. In contrast, we
propose domain-adaptation techniques that are aimed to bridge the domain gap
of saliency datasets with a maximum proportion of shared parameters.

3 Unified Image and Video Saliency Modeling

3.1 Domain-Shift Modeling

In this section we present analyses to examine the domain shift between image
and video data and between different video saliency datasets. We use the in-
sights to design corresponding domain adaptation methods. Following Wang et
al . [48], we select the video saliency datasets DHF1K [48], Hollywood-2 and UCF
Sports [34], and the image saliency dataset SALICON [20].
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Fig. 2. Experiments to examine the domain shift between the saliency datasets.
a) t-SNE visualization of MNet V2 features after domain-invariant and domain-
adaptive normalization. b) Average ground truth saliency maps. c) Comparison of
validation losses when training a simple saliency model with domain-invariant and
domain-adaptive fusion. d) Distributions of ground truth saliency map sharpness.

Domain-Adaptive Batch Normalization. Batch normalization (BN) aims
to reduce the internal covariate shift of neural network activations by transform-
ing their distribution to zero mean and unit variance for each training batch.
Simultaneously, it computes running estimates of the distribution mean and vari-
ance for inference. However, estimating these statistics across different domains
results in inaccurate intra-domain statistics, and therefore a performance trade-
off. In order to examine the domain shift between the datasets, we conduct a
simple experiment: We randomly sample 256 images/frames from each dataset
and compute their average pooled MobileNet V2 (MNet V2) features. We then
visualize the distribution of the feature vectors via t-SNE [31] after normalizing
them with the mean and variance of 1) all samples (domain-invariant) or 2) the
samples from the respective dataset (domain-adaptive). The results, shown in
Figure 2 a), reveal a significant domain shift among the different datasets, which
is mitigated by the domain-adaptive normalization. Consequently, we employ
Domain-Adaptive Batch Normalization (DABN), i.e., a different set of BN mod-
ules for each dataset. During training and inference, each batch is constructed
with data from one dataset and passed through the corresponding BN modules.

Domain-Adaptive Priors. Figure 2 b) shows the average ground truth saliency
map for each training dataset. Among the video datasets, Hollywood-2 and UCF
Sports exhibit the strongest center bias, which is plausible since they are biased
towards certain content (movies and sports) while DHF1K is more diverse. SAL-
ICON has a much weaker center bias than the video saliency datasets, which
can potentially be explained by the longer viewing time of each image/frame (5 s
vs. 30 ms to 42 ms) that allows secondary stimuli to be fixated. Accordingly, we
propose to learn a separate set of Gaussian prior maps for each dataset.

Domain-Adaptive Fusion. We hypothesize that similar image features can
have varying visual saliency for images/frames from different training datasets.
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Fig. 3. a) Overview of the proposed framework. The model consists of a MobileNet
V2 (MNet V2) encoder, followed by concatenation with learned Gaussian prior maps,
a Bypass-RNN, a decoder network with skip connections, and Fusion and Smooth-
ing layers. The prior maps, fusion, smoothing and batch-normalization modules are
domain-adaptive in order to account for domain-shift between the image and video
saliency datasets and enable high-quality shared features. b) Construction of the prior
maps from learned Gaussian parameters. c) Prior maps initialization.

For example, the Hollywood-2 and UCF Sports datasets are task-driven, i.e.,
the viewer is instructed to identify the main action shown. On the other hand,
the DHF1K and SALICON datasets contains free-viewing fixations. To test the
hypothesis, we design a simple saliency predictor (see Figure 2 c): The outputs
of the MNet V2 model are fused to a single map by a Fusion layer (1× 1 convo-
lution) and upsampled through bilinear interpolation. We train the Fusion layer
until convergence with 1) one set of weights (domain-invariant) or 2) different
weights for each dataset (domain-adaptive). We find that the validation loss is
lower for all datasets for setting 2), where the network can weigh the impor-
tance of the feature maps differently for each dataset. Consequently, we propose
to learn a different set of Fusion layer weights for each dataset.

Domain-Adaptive Smoothing. The size of the blurring filter which is used
to generate the ground truth saliency maps from fixation maps can vary between
datasets, especially since the images/frames are resized by different amounts. To
examine this effect, we compute the distribution of the ground truth saliency
map sharpness for each dataset. Sharpness is computed as the maximum image
gradient magnitude after resizing to the model input resolution. The results in
Figure 2 d) confirm the heterogeneous distributions across datasets, revealing
the highest sharpness for DHF1K. Therefore, we propose to blur the network
output with a different learned Smoothing kernel for each dataset.

3.2 UNISAL Network Architecture

We introduce a simple and lightweight neural network architecture termed UNISAL
that is designed to model image and video saliency coequally and implements
the proposed domain-adaptation techniques. The architecture, illustrated in Fig-
ure 3, follows an encoder-RNN-decoder design tailored for saliency modeling.



Unified Image and Video Saliency Modeling 7

Encoder Network. We use MobileNet-V2 (MNet V2) [40] as our backbone en-
coder for three reasons: First, its small memory footprint enables training with
sufficiently large sequence length and batch size; second, its small number of
floating point operations allows for real time inference; and third, we expect the
relatively small number of parameters to mitigate overfitting on smaller datasets
like UCF Sports. The main building blocks of MNet V2 are inverted residuals,
i.e., sequences of pointwise convolutions that decompress and compress the fea-
ture space, interleaved with depthwise separable 3×3 convolutions. Overall, for
an input resolution of [rx, ry], MNet V2 computes feature maps at resolutions
of 1

2α [rx, ry] with α ∈ {1, 2, 3, 4, 5}. The output has 1280 channels and scale
α= 5. Domain-Adaptive Batch Normalization is not used in MNet V2 since we
initialize it with ImageNet-pretrained parameters.

Gaussian Prior Maps. The domain-adaptive Gaussian prior maps are con-
structed at runtime from learned means and standard deviations. The map with
index i = 1, . . . , NG is computed as

g(i)(x, y) = γ exp

(
− (x− µ(i)

x )2

(σ
(i)
x )2

− (y − µ(i)
y )2

(σ
(i)
y )2

)
, (1)

where γ = 6 is a scaling factor since the maps are concatenated with the ReLU6

activations of MNet V2. In this formulation, if the standard deviation σ
(i)
xy is

optimized over R, then the resulting variance (σ
(i)
xy )2 has the domain R≥0, which

can lead to division by zero. Prior work which uses non-adaptive prior maps

[7] addresses this by clipping σ
(i)
xy to a predefined interval [a, b] with a > 0

and clipping µ
(i)
xy to an interval around the center of the map. However, these

constraints potentially limit the ability to learn the optimal parameters. Here,

we propose unconstrained Gaussian prior maps by substituting σ
(i)
xy = eλ

(i)
xy and

optimizing λ
(i)
xy and µ

(i)
xy over R. Moreover, instead of drawing the initial Gaussian

parameters from a normal distribution, which results in highly correlated maps,
we initialize NG = 16 maps as shown in Figure 3 c), covering a broad range
of priors. Finally, previous work usually introduces prior maps at the second to
last layer in order to model the static center bias. Here, we concatenate the prior
maps with the encoder output before the RNN and decoder, in order to leverage
the prior maps in higher-level features.

Bypass-RNN. Modeling video saliency data requires a strategy to extract
temporal features, such as an RNN, optical flow or 3D convolutions. However,
none of these techniques are generally suitable to process static inputs, whereas
our goal is to process images and videos with one model. Therefore, we introduce
a Bypass-RNN, i.e., a RNN whose output is added to its input features via a
residual connection that is automatically omitted (bypassed) for static batches.
during training and inference. Thus, the RNN only models the residual variations
in visual saliency that are caused by temporal features.
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Table 1. Network modules and corresponding operations. ConvDW (c) denotes a
depthwise separable convolution with c channels and kernel size 3×3, followed by batch
normalization and ReLU6 activation. ConvPW (cin, cout) is a pointwise 1×1 convolution
with cin input and cout output channels, followed by batch normalization and, if cin ≤
cout, by ReLU6 activation. DO(p) denotes 2D dropout with probability p. Up(c, n)
denotes n-fold upsampling with bilinear interpolation of feature maps with c channels.

Module Operations

Post-CNN ConvDW (1280), ConvPW (1280, 256)
Skip-4x ConvPW (64, 128), DO(0.6), ConvPW (128, 64)
Skip-2x ConvPW (160, 256), DO(0.6), ConvPW (256, 128)
US1 Bilinear(256, 2)
US2 ConvPW (384, 768), ConvDW (768), ConvPW (768, 128), Up(128, 2)
Post-US2 ConvPW (200, 400), ConvDW (400), ConvPW (400, 64)
Fusion ConvPW(64, 1)

In the UNISAL model, the Bypass-RNN is preceded by a post-CNN module,
which compresses the concatenated MNet V2 outputs and Gaussian prior maps
to 256 channels. For the Bypass-RNN, we use a convolutional GRU (cGRU )
RNN [44] due to its relative simplicity, followed by a pointwise convolution.
The cGRU has 256 hidden channels, 3×3 kernel size, recurrent dropout [9] with
probability p = 0.2, and MobileNet-style convolutions, i.e., depthwise separable
convolutions followed by pointwise convolutions.

Decoder Network and Smoothing. The details of the decoder modules are
listed in Table 1. First, the Bypass-RNN features are upsampled to scale α= 4
by US1 and concatenated with the output of Skip-2x. Next, the concatenated
feature maps are upsampled to scale α= 3 by US2 and concatenated with the
output of Skip-4x. The Post-US2 features are reduced to a single channel by an
Domain-Adaptive Fusion layer (1× 1 convolution) and upsampled to the input
resolution via nearest-neighbor interpolation. The upsampling is followed by a
Domain-Adaptive Smoothing layer with 41×41 convolutional kernels that explic-
itly models the dataset-dependent blurring of the ground-truth saliency maps.
Finally, following Jetley et al . [18], we transform the output into a generalized
Bernoulli distribution by applying a softmax operation across all output values.

3.3 Domain-Aware Optimization

Domain-Adaptive Input Resolution. The images/frames have different as-
pect ratios for each dataset, specifically 4:3 for SALICON, 16:9 for DHF1K,
1.85:1 (median) for Hollywood-2, and 3:2 (median) for UCF Sports. Our net-
work architecture is fully-convolutional, and therefore agnostic to exact the in-
put resolution. Moreover, each mini-batch is constructed from one dataset due to
DABN. Therefore, we use input resolutions of 288×384, 224×384, 224×416 and
256×384 for SALICON, DHF1K, Hollywood-2 and UCF Sports, respectively.
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Assimilated Frame Rate. The frame rate of the DHF1K videos is 30 fps
compared to 24 fps for Hollywood-2 and UCF Sports. In order to assimilate the
frame rates during training, and to train on longer time intervals, we construct
clips using every 5th frame for DHF1K and every 4th frame for all others, yielding
6 fps overall. During inference, the predictions are interleaved.

4 Experiments

In this section, we compare the proposed method with current state-of-the-art
image and video saliency models and provide detailed analyses are presented to
gain an understanding of the proposed approach.

4.1 Experimental Setup

Datasets and Evaluation Metrics. To evaluate our proposed unified image
and video saliency modeling framework, we jointly train UNISAL on datasets
from both modalities. For fair comparison, we use the same training data as [47],
i.e., the SALICON [20] image saliency dataset and the Hollywood-2 [34], UCF
Sports [34], and DHF1K [47] video saliency datasets. For SALICON, we use the
official training/validation/testing split of 10,000/5,000/5,000. For Hollywood-2
and UCF Sports, we use the training and testing splits of 823/884 and 103/47
videos, and the corresponding validation sets are randomly sampled 10% from
the training sets, following [47]. Hollywood-2 videos are divided into individ-
ual shots. For DHF1K, we use the official training/validation/testing splits of
600/100/300 videos. We compare against the state-of-the-art methods listed
in [47] and add newer models with available implementations [35,25,29,7,50].
Moreover, test on the MIT300 benchmark [21], after fine-tuning with the MIT1003
dataset as suggested by the benchmark authors. As in prior work [3,47], we use
the evaluation metrics AUC-Judd (AUC-J), Similarity Metric (SIM), shuffled
AUC (s-AUC), Linear Correlation Coefficient (CC), and Normalized Scanpath
Saliency (NSS) [5].

Implementation Details. We optimize the network via Stochastic Gradient
Descent with momentum of 0.9 and weight decay of 10−4. Gradients are clipped
to ±2. The learning rate is set to 0.04 and exponentially decayed by a factor
of 0.8 after each epoch. The batch size is set to 4 for video data and 32 for
SALICON. The video clip length is set to 12 frames that are sampled as described
in Section 3.3. Videos that are too short are discarded for training, which applies
to Hollywood-2. For comparability, we use the same loss formulation as Wang et
al . [48]. The model is trained for 16 epochs and with early stopping on the
DHF1K validation set. To prevent overfitting, the weights of MNet V2 are frozen
for the first two epochs and afterwards trained with a learning rate that is
reduced by a factor of 10. The pretrained BN statistics of MNet V2 are frozen
throughout training. To account for dataset imbalance, the learning rate for
SALICON batches is reduced by a factor of 2. Our model is implemented using
the PyTorch framework and trained on a NVIDIA GTX 1080 Ti GPU.
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Table 2. Quantitative performance on the video saliency datasets. The training set-
tings (i) to (vi) denote training with: (i) DHF1K, (ii) Hollywood-2, (iii) UCF Sports,
(iv) SALICON, (v) DHF1K+Hollywood-2+UCF Sports, and (vi) DHF1K+Hollywood-
2+UCF Sports+SALICON. Best performance is shown in bold while the second best
is underlined. The * symbol denotes training under setting (vi), while † indicates that
the method is fine-tuned for each dataset.

Method
Dataset DHF1K Hollywood-2 UCF Sports

AUC-J SIM s-AUC CC NSS AUC-J SIM s-AUC CC NSS AUC-J SIM s-AUC CC NSS

D
y
n

a
m

ic
m

o
d

el
s

PQFT [12] 0.699 0.139 0.562 0.137 0.749 0.723 0.201 0.621 0.153 0.755 0.825 0.250 0.722 0.338 1.780
Seo et al . [41] 0.635 0.142 0.499 0.070 0.334 0.652 0.155 0.530 0.076 0.346 0.831 0.308 0.666 0.336 1.690
Rudoy et al . [39] 0.769 0.214 0.501 0.285 1.498 0.783 0.315 0.536 0.302 1.570 0.763 0.271 0.637 0.344 1.619
Hou et al . [15] 0.726 0.167 0.545 0.150 0.847 0.731 0.202 0.580 0.146 0.684 0.819 0.276 0.674 0.292 1.399
Fang et al . [8] 0.819 0.198 0.537 0.273 1.539 0.859 0.272 0.659 0.358 1.667 0.845 0.307 0.674 0.395 1.787
OBDL [14] 0.638 0.171 0.500 0.117 0.495 0.640 0.170 0.541 0.106 0.462 0.759 0.193 0.634 0.234 1.382
AWS-D [27] 0.703 0.157 0.513 0.174 0.940 0.694 0.175 0.637 0.146 0.742 0.823 0.228 0.750 0.306 1.631
OM-CNN [19] 0.856 0.256 0.583 0.344 1.911 0.887 0.356 0.693 0.446 2.313 0.870 0.321 0.691 0.405 2.089
Two-stream [1] 0.834 0.197 0.581 0.325 1.632 0.863 0.276 0.710 0.382 1.748 0.832 0.264 0.685 0.343 1.753
*ACLNet [48] 0.890 0.315 0.601 0.434 2.354 0.913 0.542 0.757 0.623 3.086 0.897 0.406 0.744 0.510 2.567
TASED-Net [35] 0.895 0.361 0.712 0.470 2.667 0.918 0.507 0.768 0.646 3.302 0.899 0.469 0.752 0.582 2.920
STRA-Net [25] 0.895 0.355 0.663 0.458 2.558 0.923 0.536 0.774 0.662 3.478 0.910 0.479 0.751 0.593 3.018
†SalEMA [29] 0.890 0.465 0.667 0.449 2.573 0.919 0.487 0.708 0.613 3.186 0.906 0.431 0.740 0.544 2.638
*SalEMA [29] 0.895 0.283 0.739 0.414 2.285 0.875 0.371 0.663 0.456 2.214 0.899 0.381 0.769 0.521 2.503

S
ta

ti
c

m
o
d

el
s

ITTI [17] 0.774 0.162 0.553 0.233 1.207 0.788 0.221 0.607 0.257 1.076 0.847 0.251 0.725 0.356 1.640
GBVS [13] 0.828 0.186 0.554 0.283 1.474 0.837 0.257 0.633 0.308 1.336 0.859 0.274 0.697 0.396 1.818
SALICON [16] 0.857 0.232 0.590 0.327 1.901 0.856 0.321 0.711 0.425 2.013 0.848 0.304 0.738 0.375 1.838
Shallow-Net [37] 0.833 0.182 0.529 0.295 1.509 0.851 0.276 0.694 0.423 1.680 0.846 0.276 0.691 0.382 1.789
Deep-Net [37] 0.855 0.201 0.592 0.331 1.775 0.884 0.300 0.736 0.451 2.066 0.861 0.282 0.719 0.414 1.903
*Deep-Net [37] 0.874 0.288 0.610 0.374 1.983 0.901 0.482 0.740 0.597 2.834 0.880 0.365 0.729 0.475 2.448
DVA [46] 0.860 0.262 0.595 0.358 2.013 0.886 0.372 0.727 0.482 2.459 0.872 0.339 0.725 0.439 2.311
*DVA [46] 0.883 0.297 0.623 0.397 2.237 0.907 0.497 0.753 0.607 2.942 0.892 0.387 0.740 0.492 2.503
SalGAN [36] 0.866 0.262 0.709 0.370 2.043 0.901 0.393 0.789 0.535 2.542 0.876 0.332 0.762 0.470 2.238

U
N

IS
A

L
(o

u
rs

) Training setting (i) 0.899 0.378 0.686 0.481 2.707 0.920 0.496 0.710 0.612 3.279 0.896 0.443 0.717 0.553 2.689
Training setting (ii) 0.881 0.313 0.690 0.422 2.352 0.932 0.534 0.762 0.672 3.803 0.892 0.440 0.735 0.566 2.768
Training setting (iii) 0.869 0.286 0.664 0.375 2.056 0.890 0.392 0.683 0.475 2.350 0.908 0.502 0.764 0.614 3.076
Training setting (iv) 0.883 0.288 0.715 0.410 2.259 0.912 0.432 0.750 0.565 2.897 0.892 0.428 0.776 0.561 2.740
Training setting (v) 0.901 0.384 0.692 0.488 2.739 0.934 0.544 0.758 0.675 3.909 0.917 0.514 0.786 0.642 3.260
Training setting (vi) 0.901 0.390 0.691 0.490 2.776 0.934 0.542 0.759 0.673 3.901 0.918 0.523 0.775 0.644 3.381

4.2 Quantitative Evaluation

The results of the quantitative evaluation are shown in Table 2 for the video
saliency datasets and in Tables 3 and 4 for the image datasets. For video saliency
prediction, in order to analyze the impact of—and generalization across—different
datasets, we evaluate six training settings: i) DHF1K, ii) Hollywood-2, iii) UCF
Sports, iv) SALICON, v) DHF1K, Hollywood-2, and UCF Sports, vi) DHF1K,
Hollywood-2, UCF Sports and SALICON. For fair comparison, we include state-
of-the-art methods that are trained on our best-performing training setting (iv):
The ACLNet [48] video saliency model and the Deep-Net [37] and DVA [46]
image saliency models. In addition, we provide the performance of SalEMA [29],
which is based on SalGAN [36], after fine-tuning the model with training setting
(vi). Other state-of-the-art video saliency models [19,35,25] are not suitable for
training with image data as discussed in Section 1. We observe that the proposed
UNISAL model significantly outperforms previous static and dynamic methods,
across almost all metrics. We obtain the following additional findings: 1) Train-
ing with all video saliency datasets (setting (v)) always improves performance
compared to individual video saliency datasets (settings (i) to (iii)). This has not
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Fig. 4. Qualitative performance of the proposed approach on video (top part) and
image (bottom part) saliency prediction.

Table 3. performance on the SALICON and
MIT300 benchmarks. Best performance is shown
in bold while the second best is underlined.
Training setting (vi) is used for UNISAL (see sup-
plementary material for other settings).

Method
Dataset SALICON MIT300

AUC-J SIM s-AUC CC NSS AUC-J SIM s-AUC CC NSS

ITTI [17] 0.667 0.378 0.610 0.205 - 0.75 0.44 0.63 0.37 0.97
GBVS [13] 0.790 0.446 0.630 0.421 - 0.81 0.48 0.63 0.48 1.24
SALICON [16] - - - - - 0.87 0.60 0.74 0.74 2.12
Shallow-Net [37] 0.836 0.520 0.670 0.596 - 0.80 0.46 0.64 0.53 -
Deep-Net [37] - - 0.724 0.609 1.859 0.83 0.52 0.69 0.58 1.51
SAM-ResNet [7] 0.883 - 0.779 0.842 3.204 0.87 0.68 0.70 0.78 2.34
DVA [46] - - - - - 0.85 0.58 0.71 0.68 1.98
DINet [50] 0.884 - 0.782 0.860 3.249 0.86 - 0.71 0.79 2.33
SalGAN [36] - - 0.772 0.781 2.459 0.86 0.63 0.72 0.73 2.04

UNISAL (ours) 0.864 0.775 0.739 0.879 1.952 0.872 0.674 0.743 0.784 2.322

Table 4. Comparison for dy-
namic models on the static SAL-
ICON benchmark. Best perfor-
mance is shown in bold while the
second best is underlined. Train-
ing setting (vi) is used for all
methods.

Method AUC-J SIM s-AUC CC NSS

SalEMA [29] 0.732 0.470 0.519 0.411 0.760
ACLNet [48] 0.843 0.688 0.698 0.771 1.618
UNISAL (w/o DA) 0.848 0.690 0.676 0.799 1.654
UNISAL (final) 0.864 0.775 0.739 0.879 1.952

been the case for UCF Sports in a previous cross-dataset evaluation study [48].
2) Additionally including image saliency data (setting (vi)) further improves
performance for most metrics for DHF1K and UCF Sports. The exception is
Hollywood-2, but the performance decrease is less than 1%.

For image saliency prediction, UNISAL performs on par with state-of-the-art
image saliency models both on the SALICON and MIT300 benchmark as shown
in Table 3. In addition, we evaluate state-of-the-art video saliency models on
SALICON dataset as shown in Table 4. For ACLNet [48] we use the auxiliary
output which is trained on SALICON (using the LSTM output yielded worse
performance). For SalEMA [29], we fine-tuned their best performing model with
training setting (vi). A large performance jump can be observed for the domain-
adaptive UNISAL model.

4.3 Qualitative Evaluation

In Figure 4, we show randomly selected saliency predictions for both images
and videos. It is visible that the proposed unified model performs well on both
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Table 5. Ablation study of the proposed approach on the DHF1K and SALICON
validation sets. The proposed components are added incrementally to the baseline to
quantify their contribution. Training setting (vi) is used for this study.

Config.
Dataset DHF1K SALICON

KLD ↓ AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑ KLD ↓ AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑

Baseline 1.877 0.863 0.282 0.659 0.372 2.057 0.551 0.824 0.607 0.633 0.711 1.415
+ Gaussian 1.776 0.879 0.300 0.668 0.411 2.273 0.394 0.848 0.675 0.685 0.801 1.634
+ RNNRes 1.754 0.881 0.302 0.666 0.411 2.274 0.450 0.843 0.648 0.665 0.770 1.531
+ SkipConnect 1.749 0.884 0.308 0.658 0.412 2.301 0.404 0.841 0.673 0.664 0.777 1.600
+ Smoothing 1.770 0.882 0.295 0.677 0.416 2.305 0.369 0.848 0.690 0.676 0.799 1.654
+ DomainAdaptive 1.526 0.907 0.373 0.685 0.482 2.731 0.231 0.867 0.768 0.712 0.877 1.925
Final 1.531 0.907 0.381 0.691 0.487 2.755 0.226 0.867 0.771 0.725 0.880 1.923

modalities. For challenging dynamic scenes with complete occlusion (DHF1K,
left), the model correctly memorizes the salient object location, indicating that
long-term temporal dependencies are effectively modeled. Moreover, the model
correctly predicts shifting observer focus in the presence of multiple salient ob-
jects, as evident from the Hollywood-2 and UCF Sports samples. The results on
static scenes (bottom part of Figure 4) confirm that the proposed unified model
indeed generalizes to static scenes.

4.4 Ablation Study

We analyze the contribution of each proposed component: 1) Gaussian prior
maps; 2) RNN residual connection; 3) skip connections; 4) Smoothing layer;
5) domain-adaptive operations (incl. Bypass-RNN); and 6) domain-aware opti-
mization. We perform the ablation on the representative DHF1K and SALICON
validation sets. The results in Table 5 show that each of the proposed components
contributes a considerable performance increase. Overall, the domain-adaptive
operations contribute the most, both for DHF1K and SALICON. This indicates
that mitigating the domain shift between datasets is a crucial component of
UNISAL, confirming our initial studies in Section 3.1. The Gaussian prior maps
yield the second largest gain, indicating the effectiveness of their proposed un-
constrained optimization and early position in the model.

4.5 Inter-Dataset Domain Shift

Figure 5 shows the retrospective analysis of the four domain-adaptive modules.
The DABN estimated means in Figure 5 a) are correlated among video datasets
with Pearson correlation coefficients r between 82% to 83%, but not correlated
between SALICON and the video datasets (r < 3%). Similarly, the DABN vari-
ances are least correlated between SALICON and the video datasets (90% vs
92%). This confirms the shift of the feature distributions between datasets, es-
pecially between SALICON and the video data. The domain-adaptive Fusion
layer weights shown in Figure 5 b) are generally correlated across datasets, with
r > 81%. However, as for the DABN, SALICON is the least correlated with the
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Fig. 5. Retrospective analysis of the domain-adaptive modules. a) Correlation of the
batch normalization statistics between datasets (US2 module, representative). The
upper-right plots correlate the estimated means and the lower-left plots the estimated
variances. b) Correlation of the Fusion layer weights between datasets. The plots on the
diagonal show the distribution of weights of the respective dataset. The lower-left part
shows Pearson’s correlation coefficients. c) Gaussian prior maps. Significant deviations
from the initialization are highlighted. d) Smoothing kernel of each dataset.

other datasets. Moreover, many of the SALICON Fusion weights lie near zero
compared to the video datasets, which indicates that only a subset of the video
saliency features is relevant for image saliency. The Domain-Adaptive Fusion
layer models these differences while the remaining network weights are shared.
The domain-adaptive Gaussian prior maps shown in Figure 5 c) are successfully
learned with our proposed unconstrained parametrization, as observed by the
deviations from the initialization. Some prior maps are similar across datasets
while others vary visibly, indicating that the different domains have different
optimal priors. Finally, the learned Smoothing kernels shown in Figure 5 d) vary
significantly across datasets. As expected, the DHF1K dataset, which has the
least blurry training targets, results in the most narrow Smoothing filter.

4.6 Computational Load

With the design of ever more complex network architectures, few studies evaluate
the model size, although performance gains can often be traced back to more pa-
rameters. We compare the size of UNISAL to the state-of-the-art video saliency
predictors in the left column of Table 6. Our model is the most light-weight by
a significant margin, with over 5× smaller size than TASED-Net, which is the
current state-of-the-art on the DHF1K benchmark (see also Figure 1). The same
result applies when comparing to the deep image saliency methods from Table 3,
whose sizes range from 92 MB for DVA to 2.5 GB for Shallow-Net.

Another key issue for real-world applications is the model efficiency. Conse-
quently, we present a GPU runtime comparison (processing time per frame) of
video saliency models in the right column of Table 6. Our model is the most
efficient compared to previous state-of-the-art methods. In addition, we observe
a CPU (Intel Xeon W-2123 at 3.60GHz) runtime of 0.43 s (2.3 fps), which is
faster than some models’ GPU runtime. Considering both the model size and
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Table 6. Model size and runtime comparison of saliency prediction methods (based
on the DHF1K benchmark [48]). Best performance is shown in bold.

Method Model size (MB) Method Runtime (s)

Shallow-Net [37] 2,500 Two-stream [1] 20
STRA-Net [25] 641 SALICON [16] 0.5
SalEMA [29] 364 Shallow-Net [37] 0.1
Two-stream [1] 315 DVA [46] 0.1
ACLNet [48] 250 Deep-Net [37] 0.08
SalGAN [36] 130 TASED-Net [35] 0.06
SALICON [16] 117 ACLNet [48] 0.02
Deep-Net [37] 103 SalGAN [36] 0.02
DVA [46] 96 STRA-Net [25] 0.02
TASED-Net [35] 82 SalEMA [29] 0.01

UNISAL (ours) 15.5 UNISAL (ours) 0.009

the runtime, the proposed saliency modeling approach achieves state-of-the-art
performance in terms of real-world applicability. While the MNet V2 encoder
makes a large contribution to low model size and runtime, other contributing
factors are: Separable convolutions throughout the cGRU and decoder; cGRU
at the low-resolution bottleneck; bilinear upsampling. Without these measures
the model size and runtime increase to 59.4 MB and 0.017 s, respectively.

5 Discussion and Conclusion

In this paper, we have presented a simple yet effective approach to unify static
and dynamic saliency modeling. To bridge the domain gap, we found it cru-
cial to account for different sources of inter-dataset domain shift through cor-
responding novel domain-adaptive modules. We integrated the domain-adaptive
modules into the new, lightweight and simple UNISAL architecture which is de-
signed to model both data modalities coequally. We observed state-of-the-art
performance on video saliency datasets, and competitive performance on image
saliency datasets, with a 5 to 20-fold reduction in model size compared to the
smallest previous deep model, and faster runtime. We found that the domain-
adaptive modules capture the differences between image and video saliency data,
resulting in improved performance on each individual dataset through joint train-
ing. We presented preliminary and retrospective experiments which explain the
merit of the domain-adaptive modules. To our knowledge, this is the first attempt
towards unifying image and video saliency modeling in a single framework. We
believe that our work can serve as a basis for further research into joint modeling
of these modalities.
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