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ABSTRACT

Semantic understanding of 3D scenes is essential for autonomous
driving. Although a number of efforts have been devoted to seman-
tic segmentation of dense point clouds, the great sparsity of 3D
LiDAR data poses significant challenges in autonomous driving.
In this paper, we work on the semantic segmentation problem of
extremely sparse LiDAR point clouds with specific consideration of
the ground as reference. In particular, we propose a ground-aware
framework that well solves the ambiguity caused by data sparsity.
We employ a multi-section plane fitting approach to roughly extract
ground points to assist segmentation of objects on the ground. Based
on the roughly extracted ground points, our approach implicitly
integrates the ground information in a weakly-supervised manner
and utilizes ground-aware features with a new ground-aware at-
tention module. The proposed ground-aware attention module cap-
tures long-range dependence between ground and objects, which
significantly facilitates the segmentation of small objects that only
consist of a few points in extremely sparse point clouds. Extensive
experiments on two large-scale LiDAR point cloud datasets for au-
tonomous driving demonstrate that the proposed method achieves
state-of-the-art performance both quantitatively and qualitatively.
The project and dataset are available at www.moonx.ai/#/open.
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Figure 1: Our ground-aware approach accurately segments
small objects (such as pedestrians and cyclists) in sparse Li-
DAR point clouds and outperforms state-of-the art methods
(PointNet [27] and SPG [14]).
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1 INTRODUCTION

With the popularity of autonomous driving and artificial intelli-
gence, scene understanding becomes crucial for the safety and
efficiency of machine perception in dynamic, complex scenes. Au-
tonomous driving vehicles are usually equipped with various sen-
sors, among which LiDAR plays an important role in capturing
the surrounding environment. LiDAR scanning equipment is in-
sensitive to lighting change and accurate in distance measurement.
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From the 3D point cloud data collected by a LiDAR system, the 3D
environment can be reconstructed to help an autonomous system
make decisions intelligently.

In recent years, great progress has been made using deep learn-
ing techniques in semantic segmentation of point clouds [1, 10, 14,
16, 17, 26, 27, 29]. However, the point clouds, captured by LiDAR
devices with fewer channels, are extremely sparse. Figure 1 shows
an example of the sparse point cloud captured at one single position.
This sparsity of LiDAR point clouds poses two challenges when
applying previous methods in autonomous driving scenarios. First,
from the example in Figure 1, it can be seen that there is an obvious
difference between the distribution of ground points and object
points. The LiDAR points of the ground are ring-shaped and the dis-
tance between the rings increases gradually from the origin of the
LiDAR device to distant regions. This heterogeneous anisotropic
distribution makes it significantly difficult to apply existing meth-
ods that are designed for isotropic point clouds. Secondly, existing
methods classify each individual point by extracting features from
its local neighborhood. However, for sparse LiDAR point clouds, it
is challenging to perceive reliable features in a small local neigh-
borhood due to the heterogeneous anisotropic distribution.

To exploit more information beyond a local neighborhood and
extract more reliable features, we propose a ground-aware approach
to address the above-mentioned challenges in autonomous driv-
ing. Specifically, we introduce a strategy to automatically separate
ground points and objects, which supports the subsequent feature
extraction for different parts. Considering the complexity of land-
scapes in urban scenes, we utilize a multi-section plane extraction
method to represent the ground surface in a sparse LiDAR point
clouds. Although only a rough segmentation for ground points
is obtained at the beginning, the extracted ground points provide
valuable context to eliminate the ambiguity in categorizing points
of the object on the ground.

After a rough segmentation of ground points, we further lever-
age local shapes as well as the relationship between the ground
and objects to extract more reliable features for semantic segmen-
tation. Due to the sparsity and anisotropic distribution of LIDAR
points, long-range dependence between points is crucial for feature
extraction. While the attention mechanism has been successfully
used in many tasks such as language translation [19, 20] and image
captioning [9, 42], we introduce a ground-aware attention module
to capture the long-range dependence between the ground and
objects. We investigate two attention strategies, by considering the
point-to-ground distance for each point as features, or learning in-
teraction of the ground points and non-ground points automatically.
Extensive experiments on a recently published large-scale point
cloud dataset and a newly collected dataset specifically designed
for autonomous driving show that our method outperforms other
state-of-the-art methods, both quantitatively and qualitatively. The
example shown in Figure 1 demonstrates the effectiveness of the
proposed method, especially on segmenting small objects.

To sum up, the main contributions of our work are as follows:

e We propose a ground-aware attention network for semantic
segmentation of sparse LiDAR point clouds in autonomous
driving scenarios.

e We propose a ground-aware attention module that effec-
tively models long-range dependencies between ground and
objects in sparse LiDAR point clouds.

e Extensive experiments on two large-scale urban datasets
show that our method achieves state-of-the-art performance
and outperforms existing methods by a large margin.

2 RELATED WORK

Scene Understanding in Autonomous Driving. Autonomous
driving has gained increasing attention in recent years. Accurate
scene understanding of such outdoor environments is vital for au-
tonomous driving. The main tasks of scene understanding can be
categorized as object detection and semantic segmentation. Ear-
lier works [21, 25, 30, 31, 39] have achieved great progress of ob-
ject detection in autonomous driving. However, the bounding box
representation only provides rough localization without sufficient
semantic details. Semantic segmentation presents more detailed
point-wise segmentation which is important for visual perception
in autonomous driving. Such semantic segmentation not only pro-
vides information for decision making but also provides strong
support for accurate localization that is vitally crucial in many ap-
plications. 2D semantic segmentation [33, 36, 43] for autonomous
driving has been studied recently. These techniques well exploit
the texture information in 2D images, however, can not be applied
to 3D point clouds that are not regularly organized in 3D space.
Semantic Segmentation of Dense Point Clouds. Traditional ap-
proaches [2, 32] that deal with point clouds data process each point
separately by extracting hand-crafted features in a local neighbor-
hood. Recent years, deep learning has been widely applied to 3D
point cloud segmentation and made great progress via learning
more comprehensive and discriminative features. PointNet [27]
learns point-wise features with multilayer perceptrons (MLPs), and
extracts global features with max-pooling. However, it does not
capture local structures, which limits its generalizability to complex
scenes. The limitations were later addressed by PointNet++ [26],
which designs a hierarchical structure to capture local region fea-
tures by exploiting increasing contextual scales in metric spaces.
Notwithstanding promising results have been achieved in indoor
scenes, either of these methods cannot be well generalized to large-
scale point clouds of outdoor scenes. PointCNN [17] is proposed to
learn a transformation of the input points for the feature weighting
and point reordering and then apply typical CNN architecture to
process irregular and unordered 3D points. PointSIFT [10] employs
a module to encode information from different orientations for
indoor scene segmentation. Other methods, such as SEGCloud [16]
and OctNet [29], use voxel or octree to represent features of point
clouds. Unfortunately, these methods require drastically increasing
memory for large-scale LiDAR point clouds.

Semantic Segmentation of Large-Scale Point Clouds. To deal
with large-scale outdoor point clouds, SPG [14] coarsely segments
a point cloud into superpoints and constructs a graph to represent
contextual relationships between those parts. Promising improve-
ment has been made by SPG compared to previous methods on
dense point cloud data. However, with regard to sparse LIDAR point
clouds, large-scale LiDAR data for supervised 3D semantic segmen-
tation is usually very scarce, because of the heavy workload for
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Figure 2: An overview of the proposed ground-aware network for point cloud semantic segmentation. We first roughly extract
ground points by multi-section plane-fitting from the input point cloud. Then the point cloud is partitioned into multiple
regions for local feature extraction. For each region, point features and region features are extracted using MLPs. The roughly
segmented ground and object points are fed into our ground-aware attention module to capture long-range dependencies
between points and result in ground affinity features. By concatenating the affinity feature, point feature, and region feature,
each point is classified into K categories for the final prediction of semantic labels.

human-involved data annotation. Some recent approaches attempt
to investigate semantic segmentation problem for autonomous
driving scenes by incorporating 2D image views [38, 40] or using
synthetic data [3, 34]. SqueezeSeg [40] transforms 3D point clouds
to dense 2D grid representation using spherical projection and uti-
lizes 2D CNN and CRF for semantic segmentation. Following that,
PointSeg [38] improves the CRF process of SqueezeSeg to give more
consideration to local information. SqueezeSegv2 [41] improves
the model of SqueezeSeg with a Context Aggregation Module to in-
crease its robustness to dropout noises. However, there exists a large
gap between real sparse 3D point clouds and 2D representation or
synthetic data.

Attention Mechanism. Traditional CNNs rely on convolutions
to extract features of local regions but ignore long-range dependen-
cies. Recently, the attention mechanism has attracted great inter-
ests in different areas [4, 11, 22, 28, 44], showing its great ability in
modeling long-range dependencies. [35] applies self-attention to
capture global dependencies in sequential data for machine trans-
lation and demonstrated its effectiveness. [23] combines the self-
attention mechanism with autoregressive models and proposes an
image transformer model in image generation. [37] utilizes the self-
attention mechanism as a non-local operation to model long-range
spatial-temporal dependencies for video processing. Inspired by
the success of attention mechanism in various tasks, we propose a
new ground-aware framework to exploit long-range dependencies
between objects and ground points with attention mechanism for
semantic segmentation of sparse LiDAR point clouds.

3 METHOD

As shown in Figure 2, our framework of 3D point cloud semantic
segmentation mainly consists of three parts, including a rough
ground extraction module which roughly segments the input point
cloud into ground points and object points, a feature extraction
module to extract local and region features, and a ground-aware
attention module to exploit long-range dependences between points.
In the following subsections, we will introduce each of the above
modules in terms of the functionality and the specific architectures.

3.1 Rough Ground Extraction

Due to the different point distribution of ground and objects, we first
roughly segment the input LiDAR point cloud £ = {p1,...,pNn}
into two subsets Py, oyng and Popjects by simply fitting the ground
planes. In urban scenes, the ground is usually not an ideal plane.
Meanwhile, LIDAR devices introduce signal noises when the scan-
ning distance is long. Therefore, a single plane may not be sufficient
and robust enough to represent the ground surface in practice. We
employ a multi-section plane fitting approach to fit the ground
surface and extract ground points from the input point cloud.
Firstly, we divide the input point cloud into multiple sections
along the driving direction of the vehicle. Generally, the scanning
rays are evenly distributed in angle with an interval of A0, thus
the point density varies greatly at different scanning distance. We
divide the input point cloud according to the same angle intervals, as
illustrated in Figure 3(a). Taking the part of the point cloud in front
of the LiDAR device as an example, we split the points into Nge,
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Figure 3: Multi-section ground plane fitting,. (a) Partition by
scanning lines. Each red dashed line represents a Velodyne-
32 LiDAR scan line. (b) Extracted ground points in multiple
sections. Different colors indicate different sections.

sections by computing a set of region boundaries {Bj }r—o, ... N,,.
along the driving direction as

By = htan(Omin + kunb), k =0,..., Nsec, (1)

where h is the height of the LiDAR device on the ground. 6,,;,, and
Omax denote the range of the scanning angles of the LiDAR device.
41 denotes the number of scanning rays in each section. All the 3D
points whose x coordinates fall into (By_1, Bx ] are divided into the
section Sg.

For each section along the driving direction, we estimate a plane
using RANSAC [6]. Since there are points of both the ground and
objects, we first pick out possible ground points whose y € [y;, yr]
and z € [zy,2p], where y;, yr, zy, zp are predefined as the range
of seed ground points on y-direction and z-direction, respectively.
Then a plane Py is fitted for these selected points using RANSAC.
After extracting the ground surface of the entire point cloud, we uti-
lize the fitted planes to distinguish non-ground and ground points
based on distance measurement. For a point at position p = (x, y, z)
in a section Sy, if its distance to the plane d(p, Px) < o, it is tempo-
rally classified as a ground point. Otherwise, it is classified as an
object point. Figure 3(b) shows an example of the extracted ground
points in multiple sections in a sparse point cloud.

3.2 Region Feature Extraction

It is challenging to represent and extract discriminative features
from extremely sparse and large-scale point clouds. Recent stud-
ies like [14] have shown the successful application of graph-based
partition in large urban scenes. Instead of classifying individual
points, the point cloud is partitioned into superpoints as geometri-
cally simple primitives to reduce the scale of the whole point cloud.
Then a graph is built to model the relationship between adjacent

superpoints. In our approach, we also employ a graph-based par-
tition of the input large-scale point cloud. Since the input LiDAR
point cloud # has been divided into ground points $;gunq and
objects Pypjecss in the first stage, we run graph-based partition in
the two subsets separately.

After graph-based partition, we employ PointNet [27] to extract
features for each group of points that are clustered to the same
superpoint. The detailed architecture is shown in the feature ex-
traction block in Figure 2. A spatial transform network (STN) is
employed to align the points in each superpoint to a canonical space
in the position or feature level. After the second STN, we obtain
a 64-D feature vector for each point as its local feature and 512-D
region feature vector for the superpoint after two MLPs and a max-
pooling layer. For each point in the point cloud, we concatenate
its local feature and region feature and get a 576-D feature vector.
However, these features are relatively local and limited in a small
region. Then we propose to use attention mechanism to capture
long-range dependencies of different regions in large-scale sparse
LiDAR point clouds, essentially with the support of ground planes.

3.3 Ground-Aware Attention Module

Traditional CNNs implicitly model the dependencies across differ-
ent local regions using convolutions with different kernel size, re-
sulting in difficulty to represent long-range dependencies between
regions that are far away from each other. Recently proposed at-
tention architectures have achieved great interests in a wide range
of applications [4, 22, 28, 44], showing its superiority in modeling
long-range dependencies. We extend the attention scheme to 3D
point cloud and propose a new ground-aware attention module to
fully exploit the ground support for semantic segmentation. Our
ground-aware attention benefits from a cross-attention between
the ground and objects and is tailored for point cloud semantic
segmentation in autonomous driving scenarios. To the best of our
knowledge, this is the first attempt to apply the attention scheme to
3D point cloud semantic segmentation in a cross-attention manner.

The ground-aware attention module is designed to guide the
network to focus on ground-aware information. In order to fully ex-
ploit the long-range dependencies between objects and the ground,
we explore two different attention architectures, including a hard
attention module (Figure 4 (a)) and a soft attention module (Figure 4
(b)), to build the long-range dependencies of 3D points.

Hard Attention. An intuitive way of incorporating the ground
knowledge is to directly use the distance to the ground surface as
an extra channel for feature embedding. Specifically, we employ
two feature embedding branches using two PointNets to extract
features for the entire point cloud #. One branch takes the position
(x,y, z) of each point as input and extracts N position-only features
f for the N points. The other branch takes (x,y, z,dy) as input,
where dg represents the distance of the point to the fitted ground
plane and extracts N distance-associated features g, as Figure 4 (a)
shows. We then employ an attention block to model the long-range
dependencies between points according to their embedded features
to implicitly represent the support of ground information.

Soft Attention. Although the proposed hard attention scheme is
able to simply incorporate the ground information, such an explicit
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Figure 4: Two ground-aware attention modules: (a) hard at-
tention module and (b) soft attention module. s is the affinity
function and @ represents the element-wise sum.

distance is not sufficient to capture the underlying relationship
between the ground and the points of objects. We come up with a
soft attention module to learn the weighting and fusing strategies
of the two parts, ground and non-ground point features. After the
rough ground extraction, the two point-sets Py, ouna and Popjects
are separately processed by two PointNets for high dimensional
feature embedding, as shown in Figure 4 (b). The embedded features
f for the N, object points and g for the Ny ground points are fed
into the attention block.

Attention Block. The detailed architecture of the attention mod-
ule, which is used both in our hard attention module and soft atten-
tion module, is shown in Figure 4. Taking two branches of features
as input, one branch g carrying ground information while the other
branch f carrying point position information only, the designed
attention block computes the mutual affinity between points and
fuses ground features according to the affinities. Therefore, for the
point p; with non-ground feature f;, the affinity between point p;
and point pj with a ground feature g; is given by

s(f1.9)) = 0(f1) - 0(g,). )

where ¢ and 6 are two projection functions (implemented as a con-
volutional layer of kernel size 1) to embed feature for the object and
ground points respectively. There are other choices for the affinity
function s, such as a Gaussian version s(f;, g;) = e?1):009)) 1y
our experiments, we found that our approach is insensitive to differ-
ence choices, similar to the observation in [37]. An affinity matrix
A between the ground features and object features is achieved to
fuse the ground features according to the affinities for each point

pi as

1
vi= & Vst(fi,gﬂ “1(g)), 3)

where C; is a normalization factor C; = X; s(f;, g;). We then add
it to the non-ground feature for each point after a convolutional
layer w with kernel size of 1. The weighted feature can be seen as
a residual to the originally extracted feature for complementing it
with the ground-fused feature as

zi = o(y;) + ;. 4)
Taking the soft attention module as an example, our attention block
computes the affinities between object points and ground points,
fuses the features of ground points, and adds the fused information
to the original non-ground feature as complementary.

After the attention module, we obtain the features embedded
with ground affinity in the dimension of N x 512 which carries long-
range contexts of LIDAR point cloud. We concatenate the affinity
feature with the local and region features which are acquired in the
stage of feature extraction with N X 576. Finally, a few MLPs are
utilized to output per-point scores for the K categories.

3.4 Ground-Aware Loss Function

Our whole model is optimized in a weakly-supervised manner,
within which the ground information is acquired automatically as
described in Sec. 3.1. Although the initial segmentation for ground
points may not be perfectly right, these pesudo labels provide
weak supervision for the network training, without any human-
involved annotation. We empirically found that the LiDAR data
for autonomous driving presents a severe imbalance distribution
among different categories. For instance, pedestrians and bicycles
have much fewer samples compared to the other categories like
vehicles, while the background points occupy most of the scenes.
In order to increase the segmentation accuracy of small objects, we
use a class-balanced cross-entropy loss, given as

N, K
1
Lyround-aware = N, ; kZ_:l aiY;r logpig. (5)

where p;; represents the probability of the ith point belonging to
the kth category, with a total of N; points in the whole training
set. The weight for each category is computed as ap = Wyeq/ Wk,
where w = Z?/:I 1 Nik counting for the total number of points of
the kth category in the entire training set. w,,.4 is the median of
wy. over all the K categories.

4 EXPERIMENTS

In this section, we evaluate our framework on two datasets of sparse
LiDAR point clouds, the DF-3D semantic dataset [5] and a newly
collected dataset in urban road scenes with our own Velodyne HDL-
32E LiDAR device which is equipped on an autonomous driving car.
A series of quantitative and quantitative comparisons will be shown
to demonstrate the effectiveness of our ground-aware approach.

4.1 Datasets and Implementation Details

LiDAR devices that continuously launch and receive multi-beams
lasers at 360 degrees become pervasive for environment percep-
tion. In real applications for autonomous driving, more and more
companies (e.g., Uber, Ford, Baidu, Alibaba, etc.) adopt 32-channel
LiDAR in their autonomous cars. A 32-channel LiDAR is much
cheaper compared to a 64-channel LiDAR. In addition, 32-channel



Table 1: Quantitative comparison with state-of-the-art methods on the DF-3D dataset [5]. mIoU represents the average IoU,

while the OA indicates the overall accuracy.

Methods small mot crowds pedestrian cyclist tricycle bigmot others | mloU (%) OA (%)
3D FCN [15] 22.7 1.2 0.6 4.7 2.1 214 6.2 8.4 10.1
PointNet [27] 45.8 3.1 2.2 8.4 53 54.4 13.3 19.0 22.6
PointNet++ [26] 48.3 2.7 3.9 10.5 5.6 50.1 12.9 19.2 23.0
PointCNN [17] 50.4 3.3 6.8 8.2 6.2 46.9 15.2 19.6 23.3
SPG [14] 68.5 9.8 8.4 19.2 7.3 60.1 23.2 26.8 30.2
SqueezeNetv2 [41] 70.5 8.6 9.2 16.6 7.2 55.8 24.1 27.4 30.9
Ours (Vanilla) 70.4 10.3 10.8 21.9 10.2 68.1 23.9 30.8 33.6
Vanilla + CBL 70.2 11.0 11.2 22.2 9.9 68.9 23.8 31.0 34.6
Vanilla + CBL + Hard-Att 70.3 11.8 11.5 23.3 10.5 70.0 23.8 31.6 353
Ours 71.1 12.6 13.3 24.0 10.9 71.5 24.6 32.6 37.3

Table 2: Quantitative comparison with state-of-the-art methods on Semantic-LiDAR dataset.

Methods vehicle cyclist pedestrian tricycle others | mloU (%) OA. (%)
3D FCN [15] 46.0 1.2 1.5 6.6 33.0 17.7 19.8
PointNet [27] 67.1 1.1 4.9 12.7 32.6 23.7 25.5
PointNet++ [26] 72.2 3.1 9.4 16.5 40.7 28.4 29.8
PointCNN [17] 72.5 8.7 11.3 14.8 44.3 30.3 32.5
SPG [14] 76.3 4.4 9.1 17.9 42.2 30.0 32.1
SqueezeNetv2 [41] 78.2 16.6 14.8 18.2 454 34.6 36.6
Ours 82.3 22.3 24.0 18.5 52.1 39.8 43.2

LiDARs have smaller volumes that can be easily equipped on ve-
hicles, making it more suitable for large-scale applications. While
64-channel LiDAR sensors have also been utilized in some previous
studies (e.g., 3D object detection in the KITTI dataset [7]), the more
challenging and much sparser data captured by 32-channel LiDAR
has not been well explored, especially for the task of 3D point cloud
semantic segmentation. In our experiments, we focus on the sparse
data captured using 32-channel LiDAR.

DF-3D Dataset. The DF-3D dataset [5] is published by Alibaba®
for 3D semantic segmentation in autonomous driving scene. It was
collected with a Velodyne HDL-32E LiDAR sensor on a moving
vehicle on urban streets for the purpose of evaluating perception for
autonomous driving. This dataset contains 80,000 frames, in which
50,000 point-wise labeled frames are used for training and 30,000 for
testing. Each frame contains approximately 50,000 3D points. The
semantic labels of the objects above ground are manually annotated.
The annotations contain seven classes (cyclist, pedestrian, tricycle,
small mot, big mot, crowds, and others) in total. A point of the
“others" category is likely to be an obstacle or moving objects on
streets, but does not belong to any of the other six categories. The
background and roads are not annotated. We treat these points
as the “unlabeled" category in our segmentation network. Since
the labels for the test set are not available, we randomly split the
training set into a new training set and a new testing set, containing
35,000 and 15,000 frames, respectively. Each 3D point is represented
by its position (x, y, z) in the global coordinate system.

Semantic-LiDAR Dataset. In addition to the DF-3D dataset, we
collected a new dataset with a Velodyne HDL-32E LiDAR sensor for
a more thorough evaluation. In contrast to the DF-3D dataset, we
define five categories including cyclist, pedestrian, tricycle, car, and

others. Our dataset contains 3,000 frames in total, of which 2,400
frames act as the training set and 600 frames as the test set.

Implementation Details. We implemented the proposed model
using PyTorch [24]and trained it on four GTX 1080 Ti GPUs. The
optimization is achieved by the Adam optimizer [13] with the initial
learning rate as 0.01. We set the batch size as 20. The model was
trained for 300 epochs with the learning rate decay of 0.7 at epochs
150, 200, and 250.

4.2 Quantitative Evaluation

To quantitatively evaluate our method and compare with other
approaches, we use three metrics that are commonly applied in
prior works [8] for large-scale outdoor scenes: the Intersection over
Union(IoU) over each category, the average IoU (mloU) over all the
categories, and the overall accuracy (OA).

In Table 1, we provide quantitative results of our approach com-
pared with other state-of-the-art methods on the 3D-DF dataset,
while the comparison on our newly collected dataset is shown in
Table 2. From the results, we can see that our method achieves
superior performance compared to the state-of-the-art approaches
for 3D point cloud semantic segmentation on both datasets.

More importantly, semantic segmentation of small objects is
a challenging problem [12, 18, 36]. As the results shown in Ta-
ble 1 and Table 2, previous methods have difficulties to accurately
segment points for small objects, such as crowds, pedestrian, and
tricycle in such sparse point clouds. For instance, the pedestrian
category in the LiDAR data only has several points in the scene.
Our method performs better than the state-of-the-art approaches
by a large margin on small objects. The large performance gain
owes to the effectiveness of our ground-aware framework that fuses
object-ground affinity via the ground-aware attention module. Our
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Figure 5: Three groups of semantic segmentation results on the 3D-DF dataset using different methods. From left to right:
the input point cloud, the semantic segmentation results of PointNet++ [26], PointCNN [17], SqueezeSegv2 [41], SPG [14],
the result from our method, and the corresponding ground truth. For each group, we also show close-ups of one or two local
regions to demonstrate the effectiveness of our method for segmenting small objects. The cyan ground points in (g) are not
manually annotated but extracted using the ground extraction module described in Sec. 3.1 as pseudo labels.

approach well exploits long-range dependencies between small
objects and the ground for accurate segmentation.

4.3 Qualitative Performance

The qualitative results are shown in Figure 5 for the 3D-DF dataset.

The results show that our framework outperforms state-of-the-art
methods both locally and globally. Specifically, we show the results
in details in close-up views in Figure 5. In the first example (the red
box), our method correctly segments all the small objects above the
ground, while the other methods fail to segment pedestrians and
cyclists in this example. Our approach is robust for those small mot

points which are far away from the LiDAR device, demonstrating
the benefit from long-range dependencies between objects and the
ground. In the second example, when many vehicles are crowded in
a small area, existing methods can hardly distinguish the vehicles
and the ground (orange box), or misclassify the vehicles that are
close to each other (red box). In comparison, they are correctly
classified by our ground-aware approach. In the third example
(green box), we can observe that our method is robust for big mot
which is easy to be confused with the category of small mot. These
improvements and the robustness of our method mainly come from
the proposed ground-aware architecture.
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Figure 6: Qualitative comparison of our model under different configurations. (a) Input point cloud. (b) Vanilla model. (c)
Vanilla + Class-Balanced Loss (CBL). (d) Vanilla + CBL + Hard Attention. (e) Vanilla + CBL + Soft Attention. (f) Ground Truth.

4.4 Ablation Study

To illustrate the effectiveness of our architecture and understand
the influence of each proposed module better, here we present an
ablation study. In Table 1 (lower part) we also show the quantitative
performance of our method with different architecture configura-
tions on the DF-3D dataset.

Compared to existing approaches, our model takes the ground as
an extra category to the annotated categories in the DF-3D dataset
and uses the extracted ground points by multi-section plane fitting
as pseudo labels to train the model. The first vanilla version of
our model only consists of the rough ground extraction module
and the feature extraction module, trained using the cross-entropy
loss without class balance. We can see that by adding the ground
information, even with pseudo labels, the performance is improved
by alarge margin, especially for the categories of small objects, such
as pedestrian and cyclists. In the second version (Vanilla + CBL),
we replace the loss function with the class-balance cross-entropy
loss that is defined in Eq. (5). Compared with the performance gain
from simply adding the ground category, the promotion here is
relatively small, which indirectly reveals that the original feature
extraction network does not make good use of the ground feature
information in sparse point clouds. Nevertheless, by adding the
class-balanced loss function, the performance is improved by a
certain margin. In the third version (Vanilla + CBL + Hard-Att), we
add the ground-aware attention module but with the hard attention
scheme. The bottom line is our full model with the proposed soft
attention scheme. With the introduction of our final ground-aware
soft attention block, we can observe that the performance of each
category is improved to a large extent. This demonstrates that the
soft attention module learns more effective context between objects
and the ground by separately embedding features for the ground
and objects and modeling the long-range dependencies between
them. In comparison, the hard attention scheme, which directly

takes the distance to the ground plane as an extra channel, does
not represent the relationship between points as effective as the
soft attention scheme.

Figure 6 compares the segmentation results of different versions
of our ground-aware model. We can see that our soft attention
module effectively learns long-range dependencies between objects
and the ground, which significantly improve the segmentation
accuracy on small objects in sparse LIDAR point clouds.

5 CONCLUSION

In this paper, we present an effective ground-aware architecture
for semantic segmentation on large-scale 3D sparse point clouds
for the autonomous driving scenarios. The proposed ground-aware
architecture effectively exploits the ground information and cap-
tures long-range dependencies between objects and the ground via
the proposed soft attention module. Extensive experiments on two
new large-scale point cloud semantic segmentation datasets show
that our method performs favorably against other state-of-the-art
methods both quantitatively and qualitatively, especially on small
objects. The proposed ground-aware framework will benefit the
3D point cloud semantic segmentation in outdoor scenes and help
promote 3D scene understanding for autonomous driving.
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