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Abstract

Gaussian Splatting has proven to be an effective algo-
rithm for novel view synthesis and 3D reconstruction from
multi-view images. However, the underlying volumetric
primitive—the ellipsoidal Gaussian—nhas limited expressive
capabilities, leading to difficulties in 3D modelling (espe-
cially geometry such as edges, corners, and high curva-
ture). To address this limitation, in this paper, we introduce
Superquadric Splats (SQS), an extended class of volumet-
ric primitives, as a superset of Gaussian Splats, to model
more detailed geometry. We treat superquadrics as vol-
umetric distance functions rather than level-set surfaces.
A non-trivial differentiable rendering pipeline is developed
to support this. Extensive experimental analysis on mul-
tiple datasets validates the effectiveness of the proposed
SQS approach, showing both enhanced visual and geo-
metric performance compared to Gaussian-based splatting
(with more than 1dB in PSNR and prominent geometric im-
provement). Project page can be found at: https://daniel-
macswayne.github.io/3DSQS/

1. Introduction

The problem of Novel View Synthesis (NVS) is commonly
defined as follows: For a static scene, given a set of images
from posed cameras, render an image of the scene from
a previously unseen view (i.e. camera pose). Performing
well on this task necessitates constructing a 3D model of
the scene. This is a challenging task because depth infor-
mation is irreversibly lost when geometry is projected onto
an image plane. The ability to reconstruct 3D scenes from
visual inputs is immensely useful and has applications in
robotics and spatial computing [35, 39, 40].

There are various ways to reconstruct 3D scenes from
visual inputs, ranging from conventional techniques such as
stereo vision [15, 19, 21], structure from motion [32, 36],
multi-view stereo [7, 33], efc. in earlier years, as well as
neural radiance fields (NeRF) [27] and 3D Gaussian Splat-
ting (3DGS) [22] in more recent literature. As a neural rep-
resentation, NeRF showed a novel way to represent 3D via a
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Figure 1. Illustration of conventional Gaussian splats (3DGS)
vs. the proposed Superquadric Splats (3DSQS). A few 3D
shapes (e.g. cube, cylinder, sphere, and pyramid) are modelled
by regular 3DGS (top) parametrised by Eq. (4), and the proposed
3DSQS (bottom) parametrised by Eq. (6) (corresponding dynamic
videos are shown on the project page.

deep neural network, allowing high-quality novel view syn-
thesis. However, NeRF suffers from computationally costly
training and rendering, while faster NeRF methods trade
off speed for quality. As an alternative 3D modelling ap-
proach, 3DGS [22] has recently been shown to be an effec-
tive NVS solution. By modelling a scene as a composition
of parameterised volumetric primitives, a visually accurate
model can be reconstructed, in a computationally efficient
way—addressing the above-mentioned issues with NeRF.

However, even with the promising performance, there
are still weaknesses. We noticed a fundamental deficiency
of 3DGS in 3D modelling by nature, which is its basic con-
structing element—Gaussian. Such Gaussian-based under-
lying 3D representation has a limited expressive capability
by its definition, making high curvature (e.g. edges and cor-
ners) modelling inefficient. Usually, we need a large num-
ber of Gaussians to approximate shapes like boxes, while
still struggling with the accuracy around edges. An exam-
ple is shown in Fig. 2, from which we can see that although
a Gaussian splat is able to represent a circle, it struggles to
reconstruct various other shapes (e.g. square, polygon, dia-
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Figure 2. The ability of each primitive to adjust its parameters
in order to match a visual target. Left to right: Target shape,
One Superquadric splat (SQS), Ten regular Gaussian splats, One
generalised exponential splat (GES) [11], One regular Gaussian
splat [22]. It can be seen that the proposed SQS has a much higher
expressive capacity than regular Gaussian splats (3DGS).

mond), even with multiple splats. This is due to the limita-
tions that come from its fundamental definition of ellipsoid-
shaped 3D Gaussian. To this end, we are interested in ask-
ing: is there a more appropriate 3D primitive representation
that could fit a more general family of shapes by nature?
To answer this question, in this paper, we propose, to
our knowledge, the first attempt towards this direction,
and find a neat representation for 3D modelling, better fit-
ting more general shapes compared to 3DGS by its funda-
mental definition. Specifically, we revisit an established
primitive — superquadrics, and introduce Superquadric
Splat (3DSQS), an alternative volumetric primitive which
can model an extended family of shapes. An illustration
of 3DSQS versus regular 3DGS is shown in Fig. 1. Su-
perquadrics, by its definition [2], is a parametric family of
shapes that can represent cubes, cylinders, spheres, ellip-
soids efc. in a single continuous parameter space. With its
simple yet effective representation ability, we can easily fit
various shapes of objects (or parts of the objects), with a
smaller number of primitives than Gaussians. As illustrated
in Fig. 2, we show that a single Gaussian fails to approx-
imate a target square (and other shapes) and even with an
increased number of Gaussians, it still struggles to model
the shape. Whereas for superquadrics, only one is needed
to model the shape very well. This stems from the fact
that superquadrics are parametrically defined to represent
the shape in a more precise way than having to approximate
it as in Gaussians. The main contributions of this work are

summarised as follows:

* We present Superquadrics Splat (SQS), a new approach to
represent 3D using a generalised family of atomic shapes.
This extended volumetric primitive (i.e. SQS) is better
suited to model geometry, which is a crucial perspective
in 3D modelling.

* A non-trivial differentiable rendering pipeline is proposed
to support the superquadric projections. The proposed
SQS can easily serve as a plug-and-play component for
existing 3DGS-based pipelines.

» Extensive experimental analysis validates the effective-
ness of the proposed SQS, evidenced by state-of-the-art
performance for both visual reconstruction (~ 1dB im-
provement on average) and geometric reconstruction (5-
10% improvement on average).

2. Related Work

2.1. Neural Radiance Fields

Neural Radiance Fields (NeRF) [27] were a significant ad-
vancement for NVS. In NeRF, the entire scene is repre-
sented with a single function that assigns each point in the
scene an opacity and a view-dependent colour. This func-
tion is parameterised by an MLP which is trained indepen-
dently to fit each new scene. NeRF is trained using a self-
supervised framework whereby the model attempts to syn-
thesise a realistic render from a viewpoint that is shared by
one of the images in the training set. The comparison be-
tween the training image and the synthetic render acts as the
supervisory signal that is back-propagated to train the MLP.
This only works because the entire rendering pipeline is dif-
ferentiable. During rendering, the radiance field is sampled
many times along virtual rays to form an image. This is an
expensive procedure due to the many MLP forward passes.
It is often wasteful because it can involve sampling empty
regions which do not contribute to the final image. Follow-
up works aimed to sample the radiance field more efficiently
and reduce the size of the MLP [29-31, 34].

2.2. Gaussian Splatting and the Variants

Different from NeRF, a Gaussian-based representation has
increasingly been leveraged in recent advances. The semi-
nal work [22] introduced 3D Gaussian Splatting (3DGS),
enabling real-time neural rendering with high visual fi-
delity. Building upon this, several methods extend or adapt
Gaussian-based techniques for improved geometric accu-
racy and broader applications. For instance, Huang et
al. [16] explored 2D Gaussian Splatting for geometrically
accurate radiance fields. In pursuit of richer shape mod-
elling, concurrent work [8] fuses 2D Gaussians with su-
perquadrics to learn part-aware 3D representations. Be-
yond Gaussian, [4] introduced linear kernel splatting for
faster and high-fidelity rendering, while [14] represented



radiance fields using smooth convex primitives. To en-
hance surface detail, [42] proposed quadratic Gaussian
splatting, while [25] combined explicit Gaussians with im-
plicit signed distance fields. Orthogonal to these, [10] pre-
sented a Lagrangian volumetric mesh-based representation
via Tetsphere Splitting. Recent innovations also include
LinPrim [37], which uses linear primitives for differentiable
volumetric rendering, and deformable beta splatting [26],
which generalises Gaussian splatting with learnable Beta
kernels for improved deformation modelling.

3. Preliminaries

3.1. Gaussian Splatting

In Gaussian Splatting [22], each splat has its own param-
eterised radiance field modelled with an ellipsoidal radial
distance function d. It provides the characteristic shape of
the volumetric primitive. This distance is fed into an expo-
nential decay to get the Gaussian weighting. The distance
field is parameterised by the position 77 and the covariance
matrix X that encodes scale S and orientation R:
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The view-dependent colour is modelled with a spherical
harmonic series. The coefficients that describe the shape,
orientation, position, opacity and colour of each splat are
learned during the training process. During rendering, the
covariance matrix is rotated and projected from the 3D
world coordinates to the 2D image coordinates using an ef-
ficient projection method from [43].

There are two main advantages of a parametric particle-
based radiance field. Firstly, the radiance field is sampled
only at the known particle locations, thus empty regions
with no splats are automatically avoided. Secondly, the
opacity and view-dependent colour can be analytically eval-
uated rather than an expensive MLP forward pass. This
facilitates efficient opacity and colour accumulation when
forming an image.

3.2. Superquadrics

Quadrics are a family of second-degree polynomials that
generalise the ellipse to the higher-dimensional ellipsoid
that characterises 3D Gaussian Splatting. In simplified
form, the distance function can be expressed as:
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where d is a radial distance function. An ellipsoid’s sur-
face is implicitly defined by a level set of d. The param-
eters ag, ay, a, scale the ellipsoid along its principal axes.

Figure 3. Different forms of superquadrics including ellipsoids
(the left one) i.e. Gaussian, and others (red ones on the right).

By adding two exponential terms €1, €5 into the radial dis-
tance function, the shape family is extended to also include
cuboids, cylinders and more. Thus superquadrics are a su-
perset of regular quadrics. See Fig. 3 for some examples of
the various forms a superquadric can take. Specifically, the
superquadric distance function takes the form:
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Superquadrics have been a focus of 3D computer vision
for decades and first Introduced in [2]. In particular, the
ability to segment a scene into its composite superquadrics
has been extensively studied [, 28]. However, these works
attempt to model the surface of an object with a specific
level-set instance of the implicit superquadric distance func-
tion. Instead, we propose to use the entire superquadric dis-
tance field to model the volume density of the object.

Other attempts appear in a recent work [11] at modify-
ing the volumetric primitive by adding a single exponential
term to the ellipsoid distance field. This extra parameter
varies the attenuation of the distance function so that the
Gaussians can more easily model high-frequency features
such as high-contrast edges. However, it is still based on
the ellipsoidal distance function.

4. The Proposed Approach

4.1. Superquadrics as a Volumetric Primitive

Our approach utilises the same self-supervised training
framework popularised by NeRF. We adopt the same vol-
umetric particle-based splat rendering from Gaussian Splat-
ting. However, we introduce superquadrics as the new vol-
umetric primitive due to their increased expressive capabil-
ities. We also borrow the third exponential, €3, term used
in Generalised Exponential Splatting [11]. It is hoped that
this will allow the volumetric primitives to more naturally
represent common geometric features such as high contrast
edges by amplifying the distance function. For the ablation
study in Sec. 5.4, we refer to SQS (Base) and SQS (Full)
defined by whether they include the ¢35 term (please refer
to Sec. 3.4 in the supplementary material for clarity). In
the following section, we will elaborate on the new differ-
entiable rendering pipeline that is required to support this.



The distance function for exponential superquadrics is de-
fined as:
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4.2. Coordinate Systems

First, we introduce notation to clarify which coordinate sys-
tems are being discussed. The Shape coordinate system has
its origin at the centre of the volumetric shape primitive, and
its axes are aligned with the principal axes of the shape. The
World coordinate system refers to the shared space that all
shape primitives and cameras inhabit. The Camera coordi-
nate system has its origin at the focal point of the camera,
and the z axis is aligned with the viewing direction. The
Image coordinate system is the result of a perspective pro-
jection applied to the camera space. The Pixel coordinate
system describes the same space but measured in pixels in-
stead. The spaces are denoted by s, w, ¢, ¢, p respectively.
For example, the matrix R,,_,s rotates points from world
space to shape space.

4.3. Challenges in Rendering

To reiterate, rendering a Gaussian splat requires transform-
ing the 3D ellipsoidal distance function into a 2D projected
version. By doing this, the 2D distance function d’ can be
evaluated at each pixel position Z,. To achieve our pro-
posed SQS goal, we need to extend this operation to su-
perquadrics. However, this is non-trivial because merely
augmenting the previous transformation is not viable ana-
lytically. Therefore, the need to formulate an alternate ren-
dering procedure for superquadrics is crucial. Instead, the
new method evaluates the 3D superquadric distance func-
tion by first recovering the missing 3D information for the
pixel canvas.

4.4. Rim Projection

To render a 3D shape, we must project its shadow onto an
image canvas. For example, a cube viewed diagonally has
a hexagonal shadow. The contour of this shadow is called
the rim. The rim of the shape describes the boundary be-
tween the visible and occluded sections when viewed from
a certain direction. An illustration is shown in Fig. 4. For
simplicity, we use the orthographic rim as an approximation
of the perspective rim. This is defined as the set of points
where the surface normal is perpendicular to the viewing
direction [18], which provides an analytic rim constraint:

112 cos? 1 1) cos? T2 w + L2 cos? "1 sin® 2 w + 2 sin® 1y = 0. (7)
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In this case, the viewing vector is the z axis of the cam-
era space expressed in the shape coordinate system. Thus
r13, 723, 33 are components of the rotation matrix R._,.
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Figure 4. A diagram to show the projection of a superquadric
(red) using the rim intersection surface (green). The 2D hexag-
onal distance function (black) is represented using isocontours.

Note, the rim constraint is radially equivariant, meaning that
the level set that it defines, scales the entire radial distance
field. This defines a surface with the polar form f(w,n) =0
that intersects the superquadric along the rim. For each
pixel, we are aiming to find its corresponding position on
this surface. This rim constraint solves an explicit relation:
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The rim is sampled uniformly to generate a set of (w,
n) tuples. Note, sampling w uniformly causes the n values
to non-uniformly cluster at the corners. For the edge cases
where r33 — 0, the degenerate solutions are used instead
(please see Sec. 1.1 in the supplementary material). The rim
points are converted to Cartesian shape coordinates 75 and
are then rotated to align with the camera coordinate system:
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Finally, the rim is expressed in a polar form, which is
centred at the shape origin and aligned with the camera
axes:

0, = arctan 2(ryc, 7zc) (11)
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where 0 is the longitude around the z axis of the camera
coordinates and ¢ is the latitude above the plane.

¢, = arctan



Discretising the rim is only necessary because there is no
known analytic solution ¢ = f(6). If this existed, then the
2D projection of a superquadric could be derived entirely
analytically. Instead, we use the set of tuples (0, ¢,) as
representative samples relating ¢ and 6.

4.5. Pixel Canvas

In this section, we will introduce how we use the rim to
recover the 3D points 5, . from a 2D-pixel canvas point
Zp. First, we convert back to image space by re-scaling the
pixel canvas by the focal length f (measured in pixels per
meter) and shifting by the focal centre ¢;:

B = (T, — &). (13)

Next, the image canvas is re-scaled to undo the perspec-
tive projection of the splat. Hence, we multiply by the
known view-depth m. of the splat:

Te = Mye - Ti. (14)

The canvas is then converted to polar coordinates that are
centred at the splats lateral position m., m,.. Note, with
only 2D canvas information, it is impossible to calculate the
¢ component unless there is additional information about
the shape. Fortunately, the rim points can be leveraged. For
each pixel at angle 0 = arctan 2(y. — Mac, Te — Mye), W
can find the two adjacent 6, values from the rim mesh and
interpolate the missing ¢ values:

¢ = Interpolate(0,, ¢, 0). (15)

However, directly interpolating the polar values leads to
visual artefacts when the rim points are unevenly sampled.
To resolve this, it is better to instead linearly interpolate be-
tween the Cartesian points. As the rim intersection surface
is radially equivariant, we can use similar triangles to re-
cover the missing 3D information ¢ and z. for each pixel
point:

7. = Interpolate(0,., 7., 0) (16)
bang = — ot = (17)
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Finally, the restored . point is converted to shape coor-
dinates s where it is used to evaluate the 3D superquadric
distance field and find the Gaussian weighting G

fs = Rc—)s . f(: (18)

G = e 74), (19)

To summarise, we have constructed a Gaussian where
the underlying distance function is now characterised by
a superquadric. By leveraging the rim intersection sur-
face, we showed how the distance function could be eval-
uated for pixels on a 2D image canvas. The alpha blending

and colouring process is left unchanged as in the original
3DGS.

5. Experiments

5.1. Experimental Setup

Implementation details. Following recent work [6], in
this experiment section, DUSt3R [38] is used to simulta-
neously estimate a depth map and the pose of each sparse
viewpoint, thus producing an initial global point cloud.
During rendering, the image canvas is split into 16 x 16
tiles. For each tile, the splats are first culled based on their
visibility. The rim is sampled using 30 points per splat. The
training is supervised by a weighted combination of RGB
L1 loss and SSIM. There are a fixed number of splats per
scene, and there is no adaptive density control. Each ex-
periment is run with 4 x 10° splats for 1,000 training it-
erations using a learning rate of 1073, Code and models
are available on the project page. We created an efficient
PyTorch renderer that follows the same tile-based paralleli-
sation and early stopping logic as 3DGS [22]. This runs
on both CPU and GPU. For a typical render, the memory
cost is 1.1GB and the render takes 10s. Since splats are
loaded in depth-ordered batches, the memory cost is fixed
regardless of the number of splats in view. However, ren-
der time is proportional to the number of splats stacked
per pixel. However, these pixels will likely saturate and
terminate early. See section 2 in the supplementary ma-
terial for more details. All experiments were performed
based on a high-performance computing cluster equipped
with NVIDIA A100 GPUs. Each training job was run on a
compute node with 40GB of memory and 36 cores.

Datasets. To evaluate the proposed SQS, we use both
synthetic and real-world data. We opted to use synthetic
datasets because the ground truth depth map for each im-
age can be accurately obtained. This allows us to measure
the geometric quality through the estimated depth map from
the model, to establish a more reliable evaluation pipeline.
Note that although we have access to the ground truth depth
map, this is not used as a supervisory signal. Specifi-
cally, the synthetic datasets we used include: Chair [12] and
NeRDS360 [17]. On the other hand, real-world benchmark
datasets were also included for evaluation: 12 scenes from
Deep Blending [13], 6 scenes from Tanks&Temples [23],
and 8 scenes from the MipNeRF360 dataset [3].

Metrics. The visual reconstruction performance is mea-
sured by the evaluation metrics of SSIM, PSNR, and LPIPS
[41] on the rendered RGB images in the test set. However,
the quality of geometric reconstruction is measured using
evaluation metrics based on the depth map. Specifically, we
use the mean absolute relative error (rel), mean log,, error
(log10), root mean squared error (rms), rms(log), and the
accuracy under threshold (6 < 1.25%,i = 1, 2, 3), following
the depth estimation literature [5, 9, 20, 24]. Note that we



Table 1. Quantitative performance comparison for novel view synthesis across real-world datasets: DeepBlending [13], MipN-
eRF360 [3], and Tanks&Temples [23]. The proposed SQS is compared against other alternative rendering approaches. SQS is shown to
achieve the best performance for all metrics over the three standard real-world benchmark datasets. The best performances are shown in
bold and the second best is underlined.

DeepBlending MipNeRF360 Tanks&Temples
Method PSNRt1 SSIMf LPIPS) | PSNRT SSIMt LPIPS) | PSNRT SSIMT LPIPS|
3DGS [22] 21.66 0.759 0.170 21.79 0.739 0.167 25.88 0.826 0.147
GES [11] 21.78 0.765 0.172 22.20 0.772 0.164 26.19 0.830 0.145
SQS Base (Ours) | 22.17 0.785 0.160 22.39 0.773 0.161 26.34 0.836 0.139
SQS Full (Ours) 22.54 0.797 0.152 22.85 0.786 0.153 26.60 0.843 0.138

Table 2. Quantitative performance on the Chair dataset [12] for both novel view synthesis (left) and geometry (right).

Novel View Synthesis

Geometric Quality

Method PSNRf SSIM{ LPIPS| | rell logl0] tms| rms(log)l &<1.257 6<1.2521 §<1.25%1
3DGS [22] 32.00 09289 0.0662 | 0.057 0.027 0.239 0.151 0.969 0.985 0.991
GES [11] 3248 09341 0.0548 | 0.054 0.026 0.234 0.149 0.974 0.988 0.991
SQS Base (Ours) | 32.94 0.9336 0.0555 | 0.054 0.026 0.233 0.149 0.974 0.988 0.991
SQS Full (Ours) 3235 09318 0.0547 | 0.049 0.023 0.222 0.132 0.973 0.987 0.992

Figure 5. Qualitative comparison on NeRDS360 [17]. From left
to right: Ground Truth, our SQS, and 3DGS. Example regions are
zoomed in for moreldetailed comparison, e.g. the zebra crossing
and other structures are better modelled with the proposed SQS.

are aiming to measure the geometry reconstruction error.
It is unreasonable to test depth reconstruction on far-field
with no discernible multi-view discrepancy. Therefore, we
only measure the depth reconstruction accuracy for pixels
within the near-field mask. For outside open-ended scenes,
the near-field threshold is set to 24m. As there is no ground-
truth depth for real-world scenes, quantitative measurement
was not applied for real-world data, but qualitative compar-
isons are presented.

5.2. Novel View Synthesis Performance

Here in this section, we evaluate the performance of the pro-
posed SQS against the conventional 3DGS approach and

state-of-the-art technique GES [11], for the task of novel
view synthesis. Tab. 1 shows the quantitative performance
comparison across three real-world benchmark datasets,
while Tab. 2 and Tab. 3 present the quantitative comparisons
on the above-mentioned synthetic datasets.

From the results, we can see that the proposed
superquadrics-based representation is a better primitive than
Gaussian splats. This supports the aforementioned (Sec. 4)
limited expressivity of Gaussian splats, which are unable
to reconstruct certain visual/geometric features efficiently.
Fig. 2 shows how a single Gaussian struggles in modelling
high-contrast features with sharp corners. Even when 10
Gaussians are used, they are still unable to model this ge-
ometry without producing undesirable artefacts. However,
with just 1 single superquadric, the artefacts are greatly di-
minished, and the target shapes are very well reconstructed.
A recent work [11] managed to push the 3DGS boundary
to be sharper, but when representing non-ellipsoid shapes,
it fails to represent them due to the limited expressivity by
definition. Examples of more realistic scenes are shown in
Fig. 5, in which the effectiveness of SQS over 3DGS is fur-
ther validated. In addition to synthetic data, we also present
the performance of SQS on real-world scenes with compar-
ison to the 3DGS [22] and GES [11], in Fig. 6 (more video
examples are included in the supplementary material). We
can see that in real scenes, the advantage of the proposed
SQS over 3DGS further supports its effectiveness in recon-
structing better structures, e.g. boundary of the letters, tex-
tures on the wall, and the door-lock details.



Table 3. Quantitative performance on the NeRDS360 dataset [17] for both novel view synthesis (left) and geometry (right) datasets.

Novel View Synthesis Geometric Quality
Method PSNR{1 SSIM{ LPIPS| | rel] logl0)] rms| rms(log)l ¢&<1257 6&<1.2521 §<1.25%1
3DGS [22] 22.88  0.7981 0.2288 | 0.248 0.116  2.664 0.334 0.462 0.862 0.964
GES [11] 23.12 0.8067 0.2075 | 0.244 0.114  2.660 0.328 0.479 0.871 0.966
SQS (Base) | 23.14 0.8093 0.2030 | 0.230 0.113  2.627 0.341 0.509 0.870 0.963
SQS (Full) 23.13  0.8104 0.2008 | 0.233 0.115 2.671 0.351 0.501 0.860 0.959
3DGS GES SQS Base (Ours) SQS Full (Ours) Ground Truth

Figure 6. Qualitative performance of novel view synthesis on the proposed method (SQS Base and Full) compared with 3DGS [22],
GES [11], together with the Ground Truth, across various real-world scenes. Clear structures (e.g. letters, bricks, and door-lock) are better

reconstructed by the proposed SQS when compared to other methods.

5.3. Geometric Reconstruction Performance

Unlike existing NeRF-based and 3DGS-based literature that
only evaluate on novel view synthesis, i.e. the visual recon-
struction quality, of different 3D modelling methods, here
in this paper, we argue that the quality of geometry recon-
struction is crucial for various 3D applications, and eval-
uate the geometric reconstruction quantitatively and quali-
tatively. Specifically, we use the estimated depth as a ge-

ometry representation, and assess the quality according to
the evaluation metrics mentioned in Sec. 5.1. The corre-
sponding results are reported in Table 2 and Table 3 (right
side). We can see that the proposed SQS recovers better
geometric information when compared to other popular 3D
reconstruction methods. Qualitative examples of rendered
depth on real-world scenes are shown in Fig. 7, where we
can see the advantages of our SQS over other methods, e.g.
edge regions and the cup/bowl on the table.
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Figure 7. Qualitative performance of depth reconstruction on the proposed method (SQS Base and Full) compared with 3DGS [22],
GES [11], together with the Ground Truth, across various real-world scenes. The geometry (e.g. shelf edges, bench corners, glass cup and
bowl, etc.) is better reconstructed by the proposed SQS when compared to other methods.

5.4. Ablation Study and Analysis

We analyse the role of each exponential parameter. Re-
call that €;, eo define the superquadric shape, enabling
sharp corners, while €3 attenuates the distance function, al-
lowing high-contrast edges. We compare Gaussian Splat-
ting (3DGS) [22] (no €), Generalized Exponential Splatting
(GES) [11] (€3 only), and our Superquadric Splatting (SQS)
(€1, €2, €3). We also ablate €3 (denoted SQS Base) to iso-
late contributions. All methods are trained under identical
settings with fixed splats and no adaptive density control to
test representational power only. Details are in Sec. 3 of the
supplementary material.

6. Conclusion and Discussion

In this paper, we extended Gaussian Splatting to incor-
porate superquadrics as an alternate volumetric primitive,
by introducing a new representation—SQS. We derived a
new differentiable rendering pipeline to accommodate this.
By adding only 3 extra parameters per primitive, we have

greatly increased the class of shapes that can be approx-
imated. We demonstrated that superquadrics achieved a
consistent 5 — 10% improvement in depth reconstruction,
especially at edges and sharp corners. We also showed an
average improvement in visual reconstruction over classic
Gaussian Splatting of ~ 1dB. The idealised scene for this
method is primarily comprised of sharp edges and corners,
typically man-made structures. If there is limited texture,
then a small number of superquadric splats can efficiently
represent the geometry.

Limitations. Due to the unsolved explicit relation ¢ =
f(0), we were unable to find an analytic solution for the
superquadric rim projection. To address this, we stored a set
of 0, ¢ values to represent this relation. Specifically, given a
pixel’s 6,. value, we find the nearest two s on the rim using
memory-efficient binary search. In future work, a better
analytic relation could be derived to reduce rendering cost
per splat, and a CUDA implementation could considerably
increase the speed as well.
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